Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M. Valorization of biomass: deriving more value from waste. Science. 2012;337:695–9.
Article
CAS
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.
Article
Google Scholar
Gosselink RJA, de Jong E, Guran B, Abacherli A. Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crops Prod. 2004;20:121–9.
Article
CAS
Google Scholar
Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT. Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA. 2014;111:12013–8.
Article
CAS
Google Scholar
Cordova Villegas L, Mashhadi N, Chen M, Mukjerjee D, Taylor K, Biswas N. A short review of techniques for phenol removal from wastewater. Curr Pollut Rep. 2016;2:157–67.
Article
Google Scholar
Wang H, Tucker M, Ji Y. Recent development in chemical depolymerization of lignin: a review. J Appl Chem. 2013;2013:1–9.
Article
Google Scholar
Hollinshead WD, Henson WR, Abernathy M, Moon TS, Tang YJJ. Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel C-13-metabolite fingerprinting. Biotechnol Bioeng. 2016;113:91–100.
Article
CAS
Google Scholar
Kosa M, Ragauskas AJ. Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol. 2012;93:891–900.
Article
CAS
Google Scholar
Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res. 2016;44:2240–54.
Article
CAS
Google Scholar
Dal S, Trautwein G, Gerischer U. Transcriptional organization of genes for protocatechuate and quinate degradation from Acinetobacter sp. strain ADP1. Appl Environ Microbiol. 2005;71:1025–34.
Article
CAS
Google Scholar
Fischer R, Bleichrodt FS, Gerischer UC. Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology. 2008;154:3095–103.
Article
CAS
Google Scholar
Basu A, Apte SK, Phale PS. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol. 2006;72:2226–30.
Article
CAS
Google Scholar
Jimenez JI, Minambres B, Garcia JL, Diaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol. 2002;4:824–41.
Article
CAS
Google Scholar
Kumar A, Kumar S, Kumar S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J. 2005;22:151–9.
Article
CAS
Google Scholar
Ravi K, Garcia-Hidalgo J, Gorwa-Grauslund MF, Liden G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol. 2017;101:5059–70.
Article
CAS
Google Scholar
Sinigaglia M, Di Benedetto NA, Bevilacqua A, Corbo MR, Capece A, Romano P. Yeasts isolated from olive mill wastewaters from southern Italy: technological characterization and potential use for phenol removal. Appl Microbiol Biotechnol. 2010;87:2345–54.
Article
CAS
Google Scholar
Ahuatzi-Chacon D, Ordorica-Morales G, Ruiz-Ordaz N, Cristiani-Urbina E, Juarez-Ramirez C, Galindez-Mayer J. Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates. World J Microbiol Biotechnol. 2004;20:695–702.
Article
CAS
Google Scholar
Alexieva Z, Gerginova M, Zlateva P, Manasiev J, Ivanova D, Dimova N. Monitoring of aromatic pollutants biodegradation. Biochem Eng J. 2008;40:233–40.
Article
CAS
Google Scholar
Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.
Article
CAS
Google Scholar
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28:1883–96.
Article
CAS
Google Scholar
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91.
Article
CAS
Google Scholar
Schlomann M. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation. 1994;5:301–21.
Article
CAS
Google Scholar
Zaki S. Detection of meta- and ortho-cleavage dioxygenases in bacterial phenol-degraders. J Appl Sci Environ Manag. 2006;10:75–81.
Google Scholar
Nicaud JM. Yarrowia lipolytica. Yeast. 2012;29:409–18.
Article
CAS
Google Scholar
Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M. Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels. 2016;9:149.
Article
Google Scholar
Qiao K, Abidi SHI, Liu HJ, Zhang HR, Chakraborty S, Watson N, Ajikumar PK, Stephanopoulos G. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. 2015;29:56–65.
Article
CAS
Google Scholar
Blazeck J, Hill A, Liu LQ, Knight R, Miller J, Pan A, Otoupal P, Alper HS. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. 2014;5:3131.
Article
Google Scholar
Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M. Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnol Biofuels. 2016;9:227.
Article
Google Scholar
Zhang S, Ito M, Skerker JM, Arkin AP, Rao CV. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol. 2016;100:9393–405.
Article
CAS
Google Scholar
Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol. 2017;6:402–9.
Article
CAS
Google Scholar
Schwartz CM, Hussain MS, Blenner M, Wheeldon I. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. Acs Synthetic Biology. 2016;5:356–9.
Article
CAS
Google Scholar
Shabbir Hussain M, Gambill L, Smith S, Blenner MA. Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica. Acs Synth Biol. 2016;5:213–23.
Article
CAS
Google Scholar
Shabbir Hussain M, Rodriguez G, Gao D, Spagnuolo M, Gambill L, Blenner M. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS Bioeng. 2016;3:493–514.
Article
Google Scholar
Blazeck J, Liu LQ, Redden H, Alper H. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microbiol. 2011;77:7905–14.
Article
CAS
Google Scholar
Blazeck J, Reed B, Garg R, Gerstner R, Pan A, Agarwala V, Alper HS. Generalizing a hybrid synthetic promoter approach in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2013;97:3037–52.
Article
CAS
Google Scholar
Dulermo R, Brunel F, Dulermo T, Ledesma-Amaro R, Vion J, Trassaert M, Thomas S, Nicaud JM, Leplat C. Using a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica. Microb Cell Fact. 2017;16:31.
Article
Google Scholar
Yaguchi A, Rives D, Blenner M. The new kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiol. 2017;3:227–47.
Article
Google Scholar
Görner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Brück T. Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem. 2016;18:2037–46.
Article
Google Scholar
Evans CT, Ratledge C. A comparison of the oleaginous yeast, candida-curvata, grown on different carbon-sources in continuous and batch culture. Lipids. 1983;18:623–9.
Article
CAS
Google Scholar
Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, Daum C, Deshpande S, Lipzen A, Nolan M, Ohm RA, et al. Genomics and transcriptomics analyses of the oil-accumulating basidiomycete yeast Trichosporon oleaginosus: insights into substrate utilization and alternative evolutionary trajectories of fungal mating systems. MBio. 2015;6:e00918.
Article
CAS
Google Scholar
Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun MZ, Garcia-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Liden G, Gorwa-Grauslund MF. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34:1318–46.
Article
CAS
Google Scholar
Gong ZW, Shen HW, Zhou WT, Wang YD, Yang XB, Zhao ZKB. Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels. 2015;8:189.
Article
Google Scholar
Meesters PAEP, Huijberts GNM, Eggink G. High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45:575–9.
Article
CAS
Google Scholar
Park WS, Murphy PA, Glatz BA. Lipid-metabolism and cell composition of the oleaginous yeast apiotrichum-curvatum grown at different carbon to nitrogen ratios. Can J Microbiol. 1990;36:318–26.
Article
CAS
Google Scholar
Anderson JJ, Dagley S. Catabolism of aromatic-acids in trichosporon-cutaneum. J Bacteriol. 1980;141:534–43.
CAS
Google Scholar
Gaal A, Neujahr HY. Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol. 1979;137:13–21.
CAS
Google Scholar
Gonzalez-Garcia Y, Hernandez R, Zhang GC, Escalante FME, Holmes W, French WT. Lipids accumulation in Rhodotorula glutinis and Cryptococcus curvatus growing on distillery wastewater as culture medium. Environ Progress Sustain Energy. 2013;32:69–74.
Article
CAS
Google Scholar
Spanning A, Neujahr HY. The effect of glucose on enzyme-activities and phenol utilization in Trichosporon cutaneum grown in continuous culture. J Gen Microbiol. 1990;136:1491–5.
Article
Google Scholar
Georgopoulos SG, Zafiratos C, Georgiadis E. Membrane functions and tolerance to aromatic hydrocarbon fungitoxicants in conidia of Fusarium Solani. Physiologia Plant. 1967;20:373.
Article
CAS
Google Scholar
Huertas MJ, Duque E, Molina L, Rossello-Mora R, Mosqueda G, Godoy P, Christensen B, Molin S, Ramos JL. Tolerance to sudden organic solvent shocks by soil bacteria anal characterization of Pseudomonas putida strains isolated from toluene polluted sites. Environ Sci Technol. 2000;34:3395–400.
Article
CAS
Google Scholar
Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Salonen MS. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol. 1999;65:853–5.
CAS
Google Scholar
Sikkema J, Debont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269:8022–8.
CAS
Google Scholar
Udaondo Z, Molina L, Daniels C, Gomez MJ, Molina-Henares MA, Matilla MA, Roca A, Fernandez M, Duque E, Segura A, Ramos JL. Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome. Microb Biotechnol. 2013;6:598–611.
Article
Google Scholar
Ramos-Gonzalez MI, Godoy P, Alaminos M, Ben-Bassat A, Ramos JL. Physiological characterization of Pseudomonas putida DOT-T1E tolerance to p-hydroxybenzoate. Appl Environ Microbiol. 2001;67:4338–41.
Article
CAS
Google Scholar
Beney L, Gervais P. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol. 2001;57:34–42.
Article
CAS
Google Scholar
Adeboye PT, Bettiga M, Olsson L. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep. 2017;7:42635.
Article
CAS
Google Scholar