Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.
PubMed
Google Scholar
Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sport Nutr. 2017;14:30–30.
Google Scholar
Trushina EN, Vybornov VD, Riger NA, Mustafina OK, Solntseva TN, Timonin AN, Zilova IS, Radzhabkadiev RM. The efficiency of branched chain aminoacids (BCAA) in the nutrition of combat sport athletes. Vopr Pitan. 2019;88:48–56.
CAS
PubMed
Google Scholar
Park JG, Tak WY, Park SY, Kweon YO, Jang SY, Lee YR, Bae SH, Jang JY, Kim DY, Lee JS, et al. Effects of branched-chain amino acids (BCAAs) on the progression of advanced liver disease: a Korean nationwide, multicenter, retrospective, observational, cohort study. Medicine. 2017;96:e6580.
CAS
PubMed
PubMed Central
Google Scholar
Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19:954.
PubMed Central
Google Scholar
Park JH, Lee SY. Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol. 2010;85:491–506.
CAS
PubMed
Google Scholar
BCAA market size is estimated to grow with a CAGR of 3.8% during 2021–2026 with top countries data. 360 Research Reports 2021.
Branched chain amino acids - A global market overview 2021. Research and markets 2021.
Global BCAA market research report 2020. 360 Research Reports 2020.
Eggeling L, Morbach S, Sahm H. The fruits of molecular physiology: engineering the l-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J Biotechnol. 1997;56:167–82.
CAS
Google Scholar
Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K. New low-molecular weight gelators based on l-valine and l-isoleucine with various terminal groups. Tetrahedron Lett. 2005;46:2741–5.
CAS
Google Scholar
Yamamoto K, Tsuchisaka A, Yukawa H. Branched-chain amino acids. Adv Biochem Eng Biotechnol. 2017;159:103–28.
CAS
PubMed
Google Scholar
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol. 2003;104:5–25.
CAS
PubMed
Google Scholar
Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol. 2008;19:454–60.
CAS
PubMed
Google Scholar
Hermann T. Industrial production of amino acids by coryneform bacteria. J Biotechnol. 2003;104:155–72.
CAS
PubMed
Google Scholar
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 2011;13:159–68.
CAS
PubMed
Google Scholar
Eggeling I, Cordes C, Eggeling L, Sahm H. Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol. 1987;25:346–51.
CAS
Google Scholar
Guo Y, Han M, Xu J, Zhang W. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif. 2015;109:106–12.
CAS
PubMed
Google Scholar
Morbach S, Sahm H, Eggeling L. Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards l-isoleucine. Appl Environ Microbiol. 1995;61:4315–20.
CAS
PubMed
PubMed Central
Google Scholar
Pátek M, Krumbach K, Eggeling L, Sahm H. Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol. 1994;60:133–40.
PubMed
PubMed Central
Google Scholar
Shiio I, Miyajima R. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem. 1969;65:849–59.
CAS
PubMed
Google Scholar
Wang X. Strategy for improving l-isoleucine production efficiency in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2019;103:2101–11.
CAS
PubMed
Google Scholar
Duggleby RG. Domain relationships in thiamine diphosphate-dependent enzymes. Acc Chem Res. 2006;39:550–7.
CAS
PubMed
Google Scholar
Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochimica et Biophysica Acta. 1998;1385:401–19.
CAS
PubMed
Google Scholar
Weinstock O, Sella C, Chipman DM, Barak Z. Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol. 1992;174:5560–6.
CAS
PubMed
PubMed Central
Google Scholar
Chipman DM, Duggleby RG, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol. 2005;9:475–81.
CAS
PubMed
Google Scholar
Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2005;71:207–13.
PubMed
PubMed Central
Google Scholar
Gedi V, Yoon M-Y. Bacterial acetohydroxyacid synthase and its inhibitors—a summary of their structure, biological activity and current status. FEBS J. 2012;279:946–63.
CAS
PubMed
Google Scholar
Morbach S, Junger C, Sahm H, Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng. 2000;90:501–7.
CAS
PubMed
Google Scholar
Neshat A, Mentz A, Rückert C, Kalinowski J. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol. 2014;190:55–63.
CAS
PubMed
Google Scholar
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. ChemBioChem. 2013;14:746–52.
CAS
PubMed
Google Scholar
Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol. 2003;104:241–52.
CAS
PubMed
Google Scholar
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Ooyen JV, Bott M. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng. 2014;22:40–52.
CAS
PubMed
Google Scholar
Guo Y, Han M, Yan W, Xu J, Zhang W. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnol Bioprocess Eng. 2014;19:456–67.
CAS
Google Scholar
Wada M, Hijikata N, Aoki R, Takesue N, Yokota A. Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem. 2008;72:2959–65.
CAS
PubMed
Google Scholar
Jeon AJ, Song BC, Lee JH, Kim JH, Kim HW. Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same. United States. US20200080071A1. 2020
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol. 2016;100:8633–49.
CAS
PubMed
Google Scholar
Steinmetz A, Vyazmensky M, Meyer D, Barak Z, Golbik R, Chipman DM, Tittmann K. Valine 375 and Phenylalanine 109 Confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli. Biochemistry. 2010;49:5188–99.
CAS
PubMed
Google Scholar
Wieschalka S, Blombach B, Eikmanns BJ. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol. 2012;94:449–59.
CAS
PubMed
Google Scholar
Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ. l-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol. 2007;73:2079–84.
CAS
PubMed
PubMed Central
Google Scholar
Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ. Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol. 2008;79:471–9.
CAS
PubMed
Google Scholar
Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate. Appl Environ Microbiol. 2013;79:5566–75.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Shi K, Chen P, Zhang F, Xu J, Zhang W. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production. J Ind Microbiol Biotechnol. 2020;47:485–95.
PubMed
Google Scholar
Ma Y, Cui Y, Du L, Liu X, Xie X, Chen N. Identification and application of a growth-regulated promoter for improving l-valine production in Corynebacterium glutamicum. Microb Cell Fact. 2018;17:185.
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Li Y, Hu J, Dong X, Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng. 2015;29:66–75.
PubMed
Google Scholar
Blombach B, Arndt A, Auchter M, Eikmanns BJ. l-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol. 2009;75:1197–200.
CAS
PubMed
Google Scholar
Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, Takors R, Blombach B. Metabolic engineering to guide evolution- creating a novel mode for l-valine production with Corynebacterium glutamicum. Metab Eng. 2018;47:31–41.
CAS
PubMed
Google Scholar
Han G, Xu N, Sun X, Chen J, Chen C, Wang Q. Improvement of l-valine production by atmospheric and room temperature plasma mutagenesis and high-throughput screening in Corynebacterium glutamicum. ACS Omega. 2020;5:4751–8.
CAS
PubMed
PubMed Central
Google Scholar
Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L. Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol. 2002;68:2246–50.
CAS
PubMed
PubMed Central
Google Scholar
Marienhagen J, Eggeling L. Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol. 2008;74:7457–62.
CAS
PubMed
PubMed Central
Google Scholar
Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M. Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol. 2009;139:203–10.
PubMed
Google Scholar
Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H. Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:865–75.
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H. Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol. 2013;79:1250–7.
CAS
PubMed
PubMed Central
Google Scholar
Xie X, Xu L, Shi J, Xu Q, Chen N. Effect of transport proteins on l-isoleucine production with the l-isoleucine-producing strain Corynebacterium glutamicum YILW. J Ind Microbiol Biotechnol. 2012;39:1549–56.
CAS
PubMed
Google Scholar
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Biotechnol Appl Biochem. 2016;63:877–85.
CAS
PubMed
Google Scholar
Ma W, Wang J, Li Y, Yin L, Wang X. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with l-isoleucine in Corynebacterium glutamicum WM001. Microb Cell Factories. 2018;17:93.
Google Scholar
Yin L, Shi F, Hu X, Chen C, Wang X. Increasing l-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol. 2013;114:1369–77.
CAS
PubMed
Google Scholar
Vogt M, Krumbach K, Bang W-G, Ooyen JV, Noack S, Klein B, Bott M, Eggeling L. The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol. 2015;99:791–800.
CAS
PubMed
Google Scholar
Shi F, Li K, Huan X, Wang X. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and l-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl Biochem Biotechnol. 2013;171:504–21.
CAS
PubMed
Google Scholar
Dong X, Zhao Y, Hu J, Li Y, Wang X. Attenuating L-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol. 2016;93–94:70–8.
PubMed
Google Scholar
Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X. Enhancing l-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol. 2013;171:20–30.
CAS
PubMed
Google Scholar
Wang Y, Zhang F, Xu J, Zhang W, Chen X, Liu L. Improvement of l-leucine production in Corynebacterium glutamicum by altering the redox flux. Int J Mol Sci. 2020;2019:20.
Google Scholar
Feng L, Xu J, Zhang W. Improved l-leucine production in Corynebacterium glutamicum by optimizing the aminotransferases. Molecules. 2018;23:2102.
PubMed Central
Google Scholar
Huang Q, Liang L, Wu W, Wu S, Huang J. Metabolic engineering of Corynebacterium glutamicum to enhance l-leucine production. Afr J Biotechnol. 2017;16:1048–60.
CAS
Google Scholar
Ma Y, Chen Q, Cui Y, Du L, Shi T, Xu Q, Ma Q, Xie X, Chen N. Comparative genomic and genetic functional analysis of industrial l-leucine- and l-valine-producing Corynebacterium glutamicum strains. J Microbiol Biotechnol. 2018;28:1916–27.
CAS
PubMed
Google Scholar
Gerstmeir R, Wiegrabe I.Feedback-resistant alpha-isopropylmalate synthases. United States. US009347048B2. 2016
Lee JH, Song BC, Jeon AJ, Kim JH, Kim HW. A novel isopropylmalate synthase variant and a method of producing l-leucine using the same. United States. US20200032305A1. 2020
Duesseldorf B, Eggeling L, Sahm H. Production of l-isoleucine by means of recombinant microorganisms with deregulated threonine dehydratase. United Stataes. US006107063A. 2000
Yin L, Zhao J, Chen C, Hu X, Wang X. Enhancing the carbon flux and NADPH supply to increase l-isoleucine production in Corynebacterium glutamicum. Biotechnol Bioprocess Eng. 2014;19:132–42.
CAS
Google Scholar
Yin L, Hu X, Xu D, Ning J, Chen J, Wang X. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase l-isoleucine production in Corynebacterium glutamicum. Metab Eng. 2012;14:542–50.
CAS
PubMed
Google Scholar
Dong X, Zhao Y, Zhao J, Wang X. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis. J Ind Microbiol Biotechnol. 2016;43:873–85.
CAS
PubMed
Google Scholar
Guo Y, Xu J, Han M, Zhang W. Generation of mutant threonine dehydratase and its effects on isoleucine synthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol. 2015;31:1369–77.
CAS
PubMed
Google Scholar
Hou X, Ge X, Wu D, Qian H, Zhang W. Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes. J Ind Microbiol Biotechnol. 2012;39:63–72.
CAS
PubMed
Google Scholar
Petit C, Kim Y, Lee S-K, Brown J, Larsen E, Ronning DR, Suh J-W, Kang C-M. Reduction of feedback inhibition in homoserine kinase (ThrB) of Corynebacterium glutamicum enhances l-threonine biosynthesis. ACS Omega. 2018;3:1178–86.
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Zhang H, Quinn PJ. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2018;102:4319–30.
CAS
PubMed
Google Scholar
Börmann ER, Eikmanns BJ, Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol. 1992;6:317–26.
PubMed
Google Scholar
Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol. 2007;75:47–53.
CAS
PubMed
Google Scholar
Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie Van Leeuwenhoek. 2016;109:1185–97.
CAS
PubMed
Google Scholar
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10:179–206.
CAS
PubMed
Google Scholar
Garavaglia S, Raffaelli N, Finaurini L, Magni G, Rizzi M. A novel fold revealed by Mycobacterium tuberculosis NAD kinase, a key allosteric enzyme in NADP biosynthesis. J Biol Chem. 2004;279:40980–6.
CAS
PubMed
Google Scholar
Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M. Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Prog. 2010;26:361–71.
CAS
PubMed
Google Scholar
Moritz B, Striegel K, Graaf AA, Sahm H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem. 2000;267:3442–52.
CAS
PubMed
Google Scholar
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. J Biotechnol. 2012;158:231–41.
CAS
PubMed
Google Scholar
Kennerknecht N, Sahm H, Yen M-R, Pátek M, Saier MH Jr, Eggeling L. Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol. 2002;184:3947–56.
CAS
PubMed
PubMed Central
Google Scholar
Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng. 2012;14:449–57.
CAS
PubMed
Google Scholar
Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng. 2015;32:184–94.
CAS
PubMed
Google Scholar
Zhang C, Li Y, Ma J, Liu Y, He J, Li Y, Zhu F, Meng J, Zhan J, Li Z, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metab Eng. 2018;49:287–98.
CAS
PubMed
Google Scholar
Tan S, Shi F, Liu H, Yu X, Wei S, Fan Z, Li Y. Dynamic control of 4-Hydroxyisoleucine biosynthesis by modified l-isoleucine biosensor in recombinant Corynebacterium glutamicum. ACS Synth Biol. 2020;9:2378–89.
CAS
PubMed
Google Scholar
Ma Y, Ma Q, Cui Y, Du L, Xie X, Chen N. Transcriptomic and metabolomics analyses reveal metabolic characteristics of l-leucine- and l-valine-producing Corynebacterium glutamicum mutants. Ann Microbiol. 2019;69:457–68.
CAS
Google Scholar
Ma Q, Mo X, Zhang Q, Hou Z, Tan M, Xia L, Sun Q, Xie X, Chen N. Comparative metabolomic analysis reveals different evolutionary mechanisms for branched-chain amino acids production. Bioprocess Biosyst Eng. 2020;43:85–95.
CAS
PubMed
Google Scholar
Zhang H, Li Y, Wang C, Wang X. Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep. 2018;8(1):1–8.
Google Scholar
Rodriguez GM, Atsumi S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Factories. 2012;11:90.
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9.
CAS
PubMed
Google Scholar
Connor MR, Cann AF, Liao JC. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol. 2010;86:1155–64.
CAS
PubMed
PubMed Central
Google Scholar