Carvalho F, Prazeres AR, Rivas J. Cheese whey wastewater: characterization and treatment. Sci Total Environ. 2013;445–6:385–96.
Google Scholar
Domingos JMB, Martinez GA, Scoma A, Fraraccio S, Kerckhof FM, Boon N, Reis MAM, Fava F, Bertin L. Effect of operational parameters in the continuous anaerobic fermentation of cheese whey on titers, yields, productivities, and microbial community structures. ACS Sustain Chem Eng. 2017;5:1400–7.
CAS
Google Scholar
Macwan SR, Dabhi BK, Parmar SC, Aparnathi KD. Whey and its utilization. Int J Curr Microbiol Appl Sci. 2016;5:134–55.
CAS
Google Scholar
Prazeres AR, Carvalho F, Rivas J. Cheese whey management: a review. J Environ Manag. 2012;110:48–68.
CAS
Google Scholar
Asunis F, De Gioannis G, Isipato M, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresour Technol. 2019;289:121722.
CAS
PubMed
Google Scholar
Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol. 2009;82:49–57.
CAS
PubMed
Google Scholar
Cho S, Kim T, Woo HM, Lee J, Kim Y, Um Y. Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase. PLoS ONE. 2015;10:e0138109.
PubMed
PubMed Central
Google Scholar
Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng. 2015;30:16–26.
CAS
PubMed
Google Scholar
Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P. Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem. 2016;18:4693–703.
CAS
Google Scholar
Haider J, Harvianto GR, Qyyum MA, Lee M. Cost- and energy-efficient butanol-based extraction-assisted distillation designs for purification of 2,3-butanediol for use as a drop-in fuel. ACS Sustain Chem Eng. 2018;6:14901–10.
CAS
Google Scholar
Cheng KK, Liu Q, Zhang JA, Li JP, Xu JM, Wang GH. Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem. 2010;45:613–6.
CAS
Google Scholar
Wang A, Xu Y, Ma C, Gao C, Li L, Wang Y, Tao F, Xu P. Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS ONE. 2012;7:e40442.
CAS
PubMed
PubMed Central
Google Scholar
Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C, Xu P. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng. 2015;28:19–27.
CAS
PubMed
Google Scholar
Feng J, Gu Y, Yan PF, Song C, Wang Y. Recruiting energy-conserving sucrose utilization pathways for enhanced 2,3-butanediol production in Bacillus subtilis. ACS Sustain Chem Eng. 2017;5:11221–5.
CAS
Google Scholar
Moon SK, Kim DK, Park JM, Min J, Song H. Development of a semi-continuous two-stage simultaneous saccharification and fermentation process for enhanced 2,3-butanediol production by Klebsiella oxytoca. Lett Appl Microbiol. 2018;66:300–5.
CAS
PubMed
Google Scholar
Song CW, Park JM, Chung SC, Lee SY, Song H. Microbial production of 2,3-butanediol for industrial applications. J Ind Microbiol Biotechnol. 2019;46:1583–601.
CAS
PubMed
Google Scholar
Saratale GD, Jung MY, Oh MK. Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresour Technol. 2016;205:90–6.
CAS
PubMed
Google Scholar
Um J, Kim DG, Jung MY, Saratale GD, Oh MK. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate. Bioresour Technol. 2017;245:1567–74.
CAS
PubMed
Google Scholar
Saratale RG, Shin HS, Ghodake GS, Kumar G, Oh MK, Saratale GD. Combined effect of inorganic salts with calcium peroxide pretreatment for kenaf core biomass and their utilization for 2,3-butanediol production. Bioresour Technol. 2018;258:26–32.
CAS
PubMed
Google Scholar
Song CW, Rathnasingh C, Park JM, Lee J, Song H. Isolation and evaluation of Bacillus strains for industrial production of 2,3-butanediol. J Microbiol Biotechnol. 2018;28:409–17.
CAS
PubMed
Google Scholar
Guo XW, Zhang YH, Cao CH, Shen T, Wu MY, Chen YF, Zhang CY, Xiao DG. Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Biochem. 2014;61:707–15.
CAS
PubMed
Google Scholar
Speckman RA, Collins EB. Microbial production of 2,3-butylene glycol from cheese whey. Appl Environ Microbiol. 1982;43:1216–8.
CAS
PubMed
PubMed Central
Google Scholar
Barrett EL, Collins EB, Hall BJ, Matoi SH. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes. J Dairy Sci. 1983;66:2507–14.
CAS
PubMed
Google Scholar
Champluvier B, Decallonne J, Rouxhet PG. Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199. Arch Microbiol. 1989;152:411–4.
CAS
PubMed
Google Scholar
Champluvier B, Francart B, Rouxhet PG. Co-immobilization by adhesion of β-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca: conversion of lactose into 2,3-butanediol. Biotechnol Bioeng. 1989;34:844–53.
CAS
PubMed
Google Scholar
Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, Li L, Ma C, Xu P. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014;23:22–33.
CAS
PubMed
Google Scholar
Xin B, Tao F, Wang Y, Liu H, Ma C, Xu P. Coordination of metabolic pathways: enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metab Eng. 2017;41:102–14.
CAS
PubMed
Google Scholar
Heyman B, Tulke H, Putri SP, Fukusaki E, Büchs J. Online monitoring of the respiratory quotient reveals metabolic phases during microaerobic 2,3-butanediol production with Bacillus licheniformis. Eng Life Sci. 2020;20:133–44.
CAS
Google Scholar
Rebecchi S, Pinelli D, Zanaroli G, Fava F, Frascari D. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789. Biotechnol Biofuels. 2018;11:145.
PubMed
PubMed Central
Google Scholar
Vishwakarma S. Bioconversion of whey to 2,3-butanediol using Klebsiella oxytoca NRRL-13-199. Indian J Biotechnol. 2014;13:236–40.
CAS
Google Scholar
Ramachandran KB, Hashim MA, Fernandez AA. Kinetic study of 2,3-butanediol production by Klebsiella oxytoca. J Ferment Bioeng. 1990;70:235–40.
CAS
Google Scholar
Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep. 2016;6:36769.
CAS
PubMed
PubMed Central
Google Scholar
Farahnak F, Seki T, Ryu DD, Ogrydziak D. Construction of lactose-assimilating and high-ethanol-producing yeasts by protoplast fusion. Appl Environ Microbiol. 1986;51:362–7.
CAS
PubMed
PubMed Central
Google Scholar
Qureshi N, Friedl A, Maddox IS. Butanol production from concentrated lactose/whey permeate: use of pervaporation membrane to recover and concentrate product. Appl Microbiol Biotechnol. 2014;98:9859–67.
CAS
PubMed
Google Scholar
Roukas T, Kotzekidou P. Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme Microb Technol. 1998;22:199–204.
CAS
Google Scholar
Arslan NP, Aydogan MN, Taskin M. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9. J Biotechnol. 2016;231:32–9.
CAS
PubMed
Google Scholar
Ahn WS, Park SJ, Lee SY. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett. 2001;23:235–40.
CAS
Google Scholar
Mukhopadhyay R, Chatterjee S, Chatterjee BP, Banerjee PC, Guha AK. Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J. 2005;15:299–303.
CAS
Google Scholar
Jang JW, Jung HM, Im DK, Jung MY, Oh MK. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Enzyme Microb Technol. 2017;106:114–8.
CAS
PubMed
Google Scholar
Zhang Y, Guo S, Wang Y, Liang X, Xu P, Gao C, Ma C. Production of d-xylonate from corn cob hydrolysate by a metabolically engineered Escherichia coli strain. ACS Sustain Chem Eng. 2019;7:2160–8.
CAS
Google Scholar
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory: Cold Spring Harbor; 2001.
Google Scholar
Lee HK, Maddox IS. Microbial production of 2,3-butanediol from whey permeate. Biotechnol Lett. 1984;6:815–8.
CAS
Google Scholar
Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.
CAS
Google Scholar