Salway JG, Whitehead L, Finnegan JA, Karunanayaka A, Barnett D, Payne RB. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet. 1978;2:1282–4.
Article
CAS
Google Scholar
Clements RS Jr, Vourganti B, Kuba T, Oh SJ, Darnell B. Dietary myo-inositol intake and peripheral nerve function in diabetic neuropathy. Metabolism. 1979;28:477–83.
Article
Google Scholar
Michell RH. Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function? Br J Nutr. 2018;120:1–16.
Article
Google Scholar
Benvenga S, Antonelli A. Inositol(s) in thyroid function, growth and autoimmunity. Rev Endocr Metab Disord. 2016;17:471–84.
Article
CAS
Google Scholar
Ruf JC, Ciavatti M, Gustafsson T, Renaud S. Effect of D-myo-inositol on platelet function and composition and on cataract development in streptozotocin-induced diabetic rats. Biochem Med Metab Biol. 1992;48:46–55.
Article
CAS
Google Scholar
Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–7.
Article
CAS
Google Scholar
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, et al. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-kappaB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2018;76:333–46.
Article
CAS
Google Scholar
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, et al. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2017;67:475–92.
Article
CAS
Google Scholar
Sacchinelli A, Venturella R, Lico D, Di Cello A, Lucia A, Rania E, Cirillo R, Zullo F. The efficacy of inositol and n-acetyl cysteine administration (Ovaric HP) in improving the ovarian function in infertile women with PCOS with or without insulin resistance. Obstet Gynecol Int. 2014;2014:141020.
Article
Google Scholar
Gerli S, Mignosa M, Di Renzo GC. Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double blind placebo-controlled trial. Eur Rev Med Pharmacol Sci. 2003;7:151–9 PMID: 15206484.
CAS
PubMed
Google Scholar
Colodny L, Hoffman RL. Inositol–clinical applications for exogenous use. Altern Med Rev. 1998;3:432–47 PMID: 9855568.
CAS
PubMed
Google Scholar
Lagana AS, Barbaro L, Pizzo A. Evaluation of ovarian function and metabolic factors in women affected by polycystic ovary syndrome after treatment with D-Chiro-Inositol. Arch Gynecol Obstet. 2015;291:1181–6.
Article
CAS
Google Scholar
Luo Y, Qin G, Zhang J, Liang Y, Song Y, Zhao M, Tsuge T, Aoyama T, Liu J, Gu H, Qu LJ. D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. Plant Cell. 2011;23:1352–72.
Article
CAS
Google Scholar
Teng F, You R, Hu M, Liu W, Wang L, Tao Y. Production of D-glucuronic acid from myo-inositol using Escherichia coli whole-cell biocatalyst overexpressing a novel myo-inositol oxygenase from Thermothelomyces thermophila. Enzyme Microb Technol. 2019;127:70–4.
Article
CAS
Google Scholar
Tanaka K, Takanaka S, Yoshida K. A second-generation Bacillus cell factory for rare inositol production. Bioengineered. 2014;5:331–4.
Article
Google Scholar
Tanaka K, Natsume A, Ishikawa S, Takenaka S, Yoshida KI. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microb Cell Fact. 2017;16:67.
Article
Google Scholar
Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z. Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol. 2016;91:8–16.
Article
CAS
Google Scholar
Magala M, Kohajdova Z, Karovicova J. Degradation of phytic acid during fermentation of cereal substrates. J Cereal Sci. 2015;61:94–6.
Article
CAS
Google Scholar
Febles CI, Arias A, Hardisson A, Rodriquez-Alvarez C, Sierra A. Phytic acid level in wheat flours. J Cereal Sci. 2002;36:19–23.
Article
CAS
Google Scholar
Lu Y, Wang L, Teng F, Zhang J, Hu M, Tao Y. Production of myo-inositol from glucose by a novel trienzymatic cascade of polyphosphate glucokinase, inositol 1-phosphate synthase and inositol monophosphatase. Enzyme Microb Technol. 2018;112:1–5.
Article
CAS
Google Scholar
Fujisawa T, Fujinaga S, Atomi H. An in vitro enzyme system for the production of myo-inositol from starch. Appl Environ Microbiol. 2017;83:e00550.
Article
CAS
Google Scholar
You C, Shi T, Li YJ, Han PP, Zhou XG, Zhang YHP. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol Bioeng. 2017;114:1855–64.
Article
CAS
Google Scholar
Zhang YP, Sun J, Ma Y. Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol. 2017;44:773–84.
Article
CAS
Google Scholar
Brockman IM, Prather KLJ. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng. 2015;28:104–13.
Article
CAS
Google Scholar
Zhang S, Yang W, Chen H, Liu B, Lin B, Tao Y. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microb Cell Fact. 2019;18:130.
Article
Google Scholar
Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A. Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol. 2004;186:6915–27.
Article
CAS
Google Scholar
Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng. 2003;83:687–94.
Article
CAS
Google Scholar
Fraenkel DG, Falcoz-Kelly F, Horecker BL. The utilization of glucose 6-phosphate by Glucokinaseless and wild-type strains of Escherichia Coli. Proc Natl Acad Sci USA. 1964;52:1207–13.
Article
CAS
Google Scholar
Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, et al. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. 2011;39:D583–90.
Article
CAS
Google Scholar
Ghosh A, Charalampous F, Sison Y, Borer R. Metabolic function of myo-inositol. I. Cytological and chemical alterations in yeast resulting from inositol deficiency. J Biol Chem. 1960;235:2522–8.
CAS
PubMed
Google Scholar
Lehle L, Tanner W. The function of myo-inositol in the biosynthesis of raffinose. Purification and characterization of galactinol:sucrose 6-galactosyltransferase from Vicia faba seeds. Eur J Biochem. 1973;38:103–10.
Article
CAS
Google Scholar
Holub BJ. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. Adv Nutr Res. 1982;4:107–41.
Article
CAS
Google Scholar
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34:652–64.
Article
CAS
Google Scholar
Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol. 2015;33:1061–72.
Article
CAS
Google Scholar
Yadav VG, De Mey M, Lim CG, Ajikumar PK, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng. 2012;14:233–41.
Article
CAS
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–U341.
Article
Google Scholar
Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, et al. Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol. 2009;5:335.
Article
Google Scholar
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2006(2):0008. https://doi.org/10.1038/msb4100050.
Article
CAS
Google Scholar
Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol. 2007. https://doi.org/10.1002/0471142727.mb0117s79.
Article
PubMed
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.
Article
CAS
Google Scholar
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81:2506–14.
Article
CAS
Google Scholar