Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.
Article
CAS
PubMed
Google Scholar
Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo). 2012;65:385–95.
Article
CAS
Google Scholar
Parkinson EI, Bair JS, Nakamura BA, Lee HY, Kuttab HI, Southgate EH, et al. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria. Nat Commun. 2015;6:6947.
Article
CAS
PubMed
Google Scholar
Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8:531–41.
Article
CAS
PubMed
Google Scholar
Ng SB, Kanagasundaram Y, Fan H, Arumugam P, Eisenhaber B, Eisenhaber F. The 160 K Natural Organism Library, a unique resource for natural products research. Nat Biotechnol. 2018;36:570–3.
Article
CAS
PubMed
Google Scholar
Yoganathan K, Cao S, Crasta SC, Aitipamula S, Whitton SR, Ng S, et al. Microsphaerins A–D, four novel benzophenone dimers with activity against MRSA from the fungus Microsphaeropsis sp. Tetrahedron. 2008;64:10181–7.
Article
CAS
Google Scholar
Rho J-R, Subramaniam G, Choi H, Kim E-H, Ng SP, Yoganathan K, et al. Gargantulide A, a complex 52-membered macrolactone showing antibacterial activity from Streptomyces sp. Org Lett. 2015;17:1377–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirota FL, Goh F, Low K-N, Yang L-K, Crasta SC, Eisenhaber B, et al. Isolation and Identification of an anthracimycin analogue from Nocardiopsis kunsanensis, a halophile from a saltern, by genomic mining strategy. J Genomics. 2018;6:63–73.
Article
PubMed
PubMed Central
Google Scholar
Yoganathan K, Yang L, Rossant C, Huang Y, Ng S, Butler MS, et al. Cochlioquinones and epi-cochlioquinones: antagonists of the human chemokine receptor CCR5 from Bipolaris brizae and Stachybotrys chartarum. J Antibiot (Tokyo). 2004;57:59–63.
Article
CAS
Google Scholar
Vallabhaneni S, Mody RK, Walker T, Chiller T. The global burden of fungal diseases. Infect Dis Clin North Am. 2016;30:1–11.
Article
PubMed
Google Scholar
Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect. 2014;20(Suppl 6):5–10.
Article
PubMed
Google Scholar
Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2016;10:296–322.
Article
PubMed
PubMed Central
Google Scholar
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.
Article
PubMed
CAS
Google Scholar
Sun S, Lui Q, Han L, Ma Q, He S, Li X, et al. Identification and characterization of Fusarium proliferatum, a new species of fungi that cause fungal keratitis. Sci Rep. 2018;8:4859.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith KD, Achan B, Hullsiek KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob Agents Chemother. 2015;59:7197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma C, Kumar R, Kumar N, Masih A, Gupta D, Chowdhary A. Investigation of multiple resistance mechanisms in voriconazole-resistant Aspergillus flavus clinical isolates from a Chest Hospital Surveillance in Delhi, India. Antimicrob Agents Chemother. 2018;62:e01928-17.
Article
PubMed
PubMed Central
Google Scholar
Sasaki T, Furihata K, Shimazu A, Seto H, Iwata M, Watanabe T, et al. A novel macrolide antibiotic, notonesomycin A. J Antibiot (Tokyo). 1986;39:502–9.
Article
CAS
Google Scholar
Chiu H-T, Weng C-P, Lin Y-C, Chen K-H. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. Org Biomol Chem. 2016;14:1988–2006.
Article
CAS
PubMed
Google Scholar
Tanaka Y, Komaki H, Yazawa K, Mikami Y, Nemoto A, Tojyo T, et al. Brasilinolide A, a new macrolide antibiotic produced by Nocardia brasiliensis: producing strain, isolation and biological activity. J Antibiot (Tokyo). 1997;50:1036–41.
Article
CAS
Google Scholar
Robbins N, Spitzer M, Wang W, Waglechner N, Patel DJ, O’Brien JS, et al. Discovery of ibomycin, a complex macrolactone that exerts antifungal activity by impeding endocytic trafficking and membrane function. Cell Chem Biol. 2016;23:1383–94.
Article
CAS
PubMed
Google Scholar
Helaly SE, Kulik A, Zinecker H, Ramachandaran K, Tan GYA, Imhoff JF, et al. Langkolide, a 32-membered macrolactone antibiotic produced by Streptomyces sp. Acta 3062. J Nat Prod. 2012;75:1018–24.
Article
CAS
PubMed
Google Scholar
Wan Z, Fang W, Shi L, Wang K, Zhang Y, Zhang Z, et al. Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821. J Antibiot (Tokyo). 2015;68:185–90.
Article
CAS
Google Scholar
Salcedo RG, Olano C, Gómez C, Fernández R, Braña AF, Méndez C, et al. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative. Microb Cell Factories. 2016;15:44.
Article
CAS
Google Scholar
Salcedo RG, Olano C, Fernández R, Braña AF, Méndez C, de la Calle F, et al. Elucidation of the glycosylation steps during biosynthesis of antitumor macrolides PM100117 and PM100118 and engineering for novel derivatives. Microb Cell Factories. 2016;15:187.
Article
CAS
Google Scholar
Blin K, Medema MH, Kottmann R, Lee SY, Weber T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 2017;45:D555–9.
Article
CAS
PubMed
Google Scholar
Gomez-Escribano JP, Alt S, Bibb MJ. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar Drugs. 2016;14:78.
Article
PubMed Central
CAS
Google Scholar
Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol. 2017;13:607–9.
Article
CAS
Google Scholar
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR–Cas9 based engineering of actinomycetal genomes. ACS Synth Biol. 2015;4:1020–9.
Article
CAS
PubMed
Google Scholar
Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiol Read Engl. 2017;163:1148–55.
Article
CAS
Google Scholar
Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol. 2015;4:723–8.
Article
CAS
PubMed
Google Scholar
Huang H, Zheng G, Jiang W, Hu H, Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin. 2015;47:231–43.
Article
CAS
PubMed
Google Scholar
Takeuchi T, Hatano M, Umekita M, Hayashi C, Wada S-I, Nagayoshi M, et al. ATP depletion assay led to the isolation of new 36-membered polyol macrolides deplelides A and B from Streptomyces sp. MM581-NF15. Org Lett. 2017;19:4207–10.
Article
CAS
PubMed
Google Scholar
Komatsu K, Tsuda M, Tanaka Y, Mikami Y, Kobayashi J. Absolute stereochemistry of immunosuppressive macrolide brasilinolide A and its new congener brasilinolide C. J Org Chem. 2004;69:1535–41.
Article
CAS
PubMed
Google Scholar
Sasaki T, Furihata K, Nakayama H, Seto H, Otake N. The structure of a novel macrolide antibiotic, notonesomycin A. Tetrahedron Lett. 1986;27:1603–6.
Article
CAS
Google Scholar
Hideyuki S, Yasushi T, Katsukiyo Y, Yuzuru M, Jun’ichi K. Brasilinolide A, new immunosuppressive macrolide from actinomycete Nocardia brasiliensis. Tetrahedron. 1996;52:9031–4.
Article
Google Scholar
Wan Z, Fang W, Shi L, Wang K, Zhang Y, Zhang Z, et al. Novonestmycins A and B, two new 32-membered bioactive macrolides from Streptomyces phytohabitans HBERC-20821. J Antibiot. 2015;68:185–90.
Article
CAS
Google Scholar
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.
Article
CAS
PubMed
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:W237–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.
Article
CAS
Google Scholar
Salcedo RG, Olano C, Gómez C, Fernández R, Braña AF, Méndez C, de la Calle F, Salas JA. Characterization and engineering of the biosynthesis gene cluster for antitumor macrolides PM100117 and PM100118 from a marine actinobacteria: generation of a novel improved derivative. Microb Cell Factories. 2016;15–62:44.
Article
CAS
Google Scholar
Wang L, White RL, Vining LC. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. Microbiol Read Engl. 2002;148:1091–103.
Article
CAS
Google Scholar
Pandey RP, Gurung RB, Parajuli P, Koirala N, Tuoi LT, Sohng JK. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr Res. 2014;393:26–31.
Article
CAS
PubMed
Google Scholar
Luo Y, Zhang L, Barton KW, Zhao H. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth Biol. 2015;4:1001–10.
Article
CAS
PubMed
Google Scholar
Leyh TS, Taylor JC, Markham GD. The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem. 1988;263:2409–16.
CAS
PubMed
Google Scholar
Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y, et al. Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem Biol. 2008;15:693–705.
Article
CAS
PubMed
Google Scholar
Mougous JD, Senaratne RH, Petzold CJ, Jain M, Lee DH, Schelle MW, et al. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2006;103:4258–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sogi KM, Holsclaw CM, Fragiadakis GK, Nomura DK, Leary JA, Bertozzi CR. Biosynthesis and regulation of sulfomenaquinone, a metabolite associated with virulence in Mycobacterium tuberculosis. ACS Infect Dis. 2016;2:800–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sekowska A, Kung HF, Danchin A. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol. 2000;2:145–77.
CAS
PubMed
Google Scholar
Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT, et al. Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci USA. 2002;99:8962–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong H, Samborskyy M, Usachova K, Schnatz K, Leadlay PF. Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein J Org Chem. 2017;13:2408–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang X, Eitel K, Kaysser L, Kulik A, Grond S, Gust B. A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. Nat Chem Biol. 2013;9:610–5.
Article
CAS
PubMed
Google Scholar
Li R, Lloyd EP, Moshos KA, Townsend CA. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009. Chembiochem Eur J Chem Biol. 2014;15:320–31.
Article
CAS
Google Scholar
van der Horst MA, Hartog AF, El Morabet R, Marais A, Kircz M, Wever R. Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur J Org Chem. 2015;2015:534–41.
Article
CAS
Google Scholar
Banik JJ, Craig JW, Calle PY, Brady SF. Tailoring enzyme-rich environmental DNA clones: a source of enzymes for generating libraries of unnatural natural products. J Am Chem Soc. 2010;132:15661–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schniete JK, Cruz-Morales P, Selem-Mojica N, Fernández-Martínez LT, Hunter IS, Barona-Gómez F, et al. Expanding primary metabolism helps generate the metabolic robustness to facilitate antibiotic biosynthesis in streptomyces. mBio. 2018;9:e02283-17.
Article
PubMed
PubMed Central
Google Scholar
Romero-Rodríguez A, Rocha D, Ruiz-Villafan B, Tierrafría V, Rodríguez-Sanoja R, Segura-González D, et al. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. BMC Microbiol. 2016;16:77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin X-M, Chang Y-K, Lee JH, Hong S-K. Effects of Increased NADPH concentration by metabolic engineering of the pentose phosphate pathway on antibiotic production and sporulation in Streptomyces lividans TK24. J Microbiol Biotechnol. 2017;27:1867–76.
Article
CAS
PubMed
Google Scholar
Wentzel A, Bruheim P, Øverby A, Jakobsen ØM, Sletta H, Omara WAM, et al. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). BMC Syst Biol. 2012;6:59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001;Chapter 2:Unit 2.4.
CAS
PubMed
Google Scholar
Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.
Article
CAS
PubMed
Google Scholar
Labana P, Gosse JT, Boddy CN. Draft genome sequence of the type strain Streptomyces armeniacus ATCC 15676. Microbiol Resour Announc. 2018;7:e01107-18.
Article
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
Article
CAS
Google Scholar
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998;26:544–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26:1107–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenhaber B, Kuchibhatla D, Sherman W, Sirota FL, Berezovsky IN, Wong W-C, et al. The recipe for protein sequence-based function prediction and its implementation in the ANNOTATOR software environment. Methods Mol Biol Clifton NJ. 2016;1415:477–506.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci CABIOS. 1992;8:275–82.
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim YH, Wong FT, Yeo WL, Ching KC, Lim YW, Heng E, et al. Auroramycin: a potent antibiotic from Streptomyces roseosporus by CRISP–Cas9 activation. ChemBioChem. 2018;19:1716–9.
Article
CAS
Google Scholar
Allard N, Garneau D, Poulin-Laprade D, Burrus V, Brzezinski R, Roy S. A diaminopimelic acid auxotrophic Escherichia coli donor provides improved counterselection following intergeneric conjugation with actinomycetes. Can J Microbiol. 2015;61:565–74.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–8.
Article
CAS
Google Scholar