Peters T. All about albumin: biochemistry, genetics, and medical applications. 1st ed. San Diego: Academic Press; 1996.
Google Scholar
Kobayashi Kaoru. Summary of recombinant human serum albumin development. Biologicals. 2006;34:55–9.
Article
CAS
Google Scholar
Fanalia G, Masib A, Trezzab V, Marinob M, Fasanoa M, Ascenzib P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33:209–90.
Article
Google Scholar
Boldt J. Use of albumin: an update. Br J Anaesth. 2010;104(3):276–84.
Article
CAS
Google Scholar
Chen Z, He Y, Shi B, Yang D. Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim Biophys Acta. 2013;1830:5515–25.
Article
CAS
Google Scholar
Wu X, Lin Y, Xiong F, Zhou Y, Yu F, Deng J, Huang P, Chen H. The extremely high level expression of human serum albumin in the milk of transgenic mice. Transgenic Res. 2012;21:1359–66.
Article
CAS
Google Scholar
Echelard Y, Williams JL, Destrempes MM, Koster JA, Overton SA, Pollock DP, Rapiejko KT, Behboodi E, Masiello NC, Gavin WG, Pommer J, VanPatten SM, Faber DC, Cibelli JB, Meade HM. Production of recombinant albumin by a herd of cloned transgenic cattle. Transgenic Res. 2009;18:361–76.
Article
CAS
Google Scholar
He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA. 2011;108:19078–83.
Article
CAS
Google Scholar
Sun QY, Ding LW, Lomonossoff GP, Sun YB, Luo M, Li CQ, Jiang L, Xu ZF. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture. J Biotechnol. 2011;155:164–72.
Article
CAS
Google Scholar
Quirk AV, Geisow MJ, Woodrow JR, Burton SJ, Wood PC, Sutton AD, Johnson RA, Dodsworth N. Production of recombinant human serum albumin from Saccharomyces cerevisiae. Biotechnol Appl Biochem. 1989;11(3):273–87.
CAS
Google Scholar
Kang H, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK. Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000;53:575–82.
Article
CAS
Google Scholar
Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T. High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng. 2000;89(1):55–61.
Article
CAS
Google Scholar
Ohya T, Ohyama M, Kobayashi K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol Bioeng. 2005;90(7):876–87.
Article
CAS
Google Scholar
Saunders CW, Schmidt BJ, Allonee RLM, Guyer MS. Secretion of human serum albumin from Bacillus subtilis. J Bacteriol. 1987;169:2917–25.
Article
CAS
Google Scholar
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.
Google Scholar
Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL. High yield production of heterologous proteins with Escherichia coli. Defence Sci J. 2009;59:137–46.
Article
CAS
Google Scholar
Lawn RM, Adelman J, Bock SC, Franke AE, Houck CM, Najarian R, Seeburg PH, Wion KL. The sequence of human serum albumin cDNA and its expression in E. coli. Nucleic Acids Res. 1981;9:6103–14.
Article
CAS
Google Scholar
Latta L, Knapp M, Sarmientos P, Brefort G, Becquart J, Guerrier L, Jung G, Mayaux J. Synthesis and purification of mature human serum albumin from E. coli. BioTechnol. 1987;5:1309–14.
CAS
Google Scholar
Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.
Article
CAS
Google Scholar
Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13:247–61.
Article
CAS
Google Scholar
Idicula-Thomas S, Balaji PV. Protein aggregation: a perspective from amyloid and inclusion-body formation. Curr Sci. 2007;92:6.
Google Scholar
Fink AL. Protein aggregation: folding intermediates, inclusion bodies and amyloid. Fold Des. 1998;3:R9–23.
Article
CAS
Google Scholar
Miot M, Betton JM. Protein quality control in the bacterial periplasm. Microb Cell Fact. 2004;3:4.
Article
Google Scholar
Leibly DJ, Nguyen TN, Kao LT, Hewitt SN, Barrett LK, et al. Stabilizing additives added during cell lysis aid in the solubilisation of recombinant proteins. PLoS ONE. 2012. doi:10.1371/journal.pone.0052482.
Google Scholar
Kaushik JK, Bhat R. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458–65.
Article
CAS
Google Scholar
Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18(1):24–36.
CAS
Google Scholar
Jain NK, Roy I. Trehalose and protein stability. Curr Protoc Protein Sci. 2010. doi:10.1002/0471140864.
Google Scholar
Back JF, Oakenfull D, Smith MB. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry. 1979;18:5191–6.
Article
CAS
Google Scholar
Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis. 2005;20:74–81.
Article
Google Scholar
Béranger F, Crozet C, Goldsborough A, Lehmann S. Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochem Biophys Res Commun. 2008;374:44–8.
Article
Google Scholar
Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell. 1993;74:909–17.
Article
CAS
Google Scholar
Wong P, Houry WA. Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells. J Struct Biol. 2004;146:79–89.
Article
CAS
Google Scholar
Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–9.
Article
CAS
Google Scholar
Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852–8.
Article
CAS
Google Scholar
Georgiou G, Valax P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol. 1996;7:190–7.
Article
CAS
Google Scholar
Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol. 2002;96:13–21.
Article
CAS
Google Scholar
Chaudhuri TK, Verma VK, Maheshwari A. GroEL assisted folding of large polypeptide substrates in Escherichia coli: present scenario and assignments for the future. Prog Biophys Mol Biol. 2008;99:42–50.
Article
Google Scholar
Gupta P, Aggarwal N, Batra P, Mishra S, Chaudhuri TK. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Int J Biochem Cell Biol. 2006;38:1975–85.
Article
CAS
Google Scholar
Lamppa JW, Tanyos SA, Griswold KE. Engineering Escherichia coli for soluble expression and single step purification of active human lysozyme. J Biotechnol. 2013;164:1–8.
Article
CAS
Google Scholar
O’Reilly AO, Cole AR, Lopes JL, Lampert A, Wallace BA. Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli. Biochim Biophys Acta. 2014;1840(1):10–5.
Article
Google Scholar
Ray M, Mishra P, Das P, Sabat SC. Expression and purification of soluble bio-active rice plant catalase—a from recombinant Escherichia coli. J Biotechnol. 2012;157:12–9.
Article
CAS
Google Scholar
Thomson NM, Saika A, Ushimaru K, Sangiambut S, Tsuge T, Summers DK, Sivaniah E. Efficient production of active polyhydroxyalkanoate synthase in Escherichia coli by coexpression of molecular chaperones. Appl Environ Microbiol. 2013;79:1948–55.
Article
CAS
Google Scholar
Yanase H, Moriya K, Mukai N, Kawata Y, Okamoto K, Kato N. Effects of GroESL coexpression on the folding of nicotinoprotein formaldehyde dismutase from Pseudomonas putida F61. Biosci Biotechnol Biochem. 2002;66:85–91.
Article
CAS
Google Scholar
Nishihara K, Kanemori M, Yanagi H, Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol. 2000;66(3):884–9.
Article
CAS
Google Scholar
Piao DC, Shin DW, Kim IS, Li HS, Oh SH, Singh B, Maharjan S, Lee YS, Bok JD, Cho CS, Hong ZS, Kang SK, Choi YJ. Trigger factor assisted soluble expression of recombinant spike protein of porcine epidemic diarrhea virus in Escherichia coli. BMC Biotechnol. 2016;16:39.
Article
Google Scholar
Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell. 2001;107:235–46.
Article
CAS
Google Scholar
Farr GW, Fenton WA, Chaudhuri TK, Clare DK, Saibil HR, Horwich AL. Folding with and without encapsulation by cis- and trans-only GroEL–GroES complexes. EMBO J. 2003;22:3220–30.
Article
CAS
Google Scholar
Richardson A, Landry SJ, Georgopoulos C. The ins and outs of a molecular chaperone machine. Trends Biochem Sci. 1998;23:138–43.
Article
CAS
Google Scholar
Agashe R, Guha S, Chang C, Genevaux P, Hayer Hartl M, Stemp M, Georgopoulos C, Hartl FU, Barrel J. Function of Trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell. 2004;117:199–209.
Article
CAS
Google Scholar
Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol. 2004;22(7):877–82.
Article
CAS
Google Scholar
Llinas M, Marqusee S. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci. 1998;7:96–104.
Article
CAS
Google Scholar
Wetlaufer DB. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci USA. 1973;70:697–701.
Article
CAS
Google Scholar
Santra MK, Banerjee A, Rahaman O, Panda D. Unfolding pathways of human serum albumin: evidence for sequential unfolding and folding of its three domains. Int J Biol Macromol. 2005;37:200–4.
Article
CAS
Google Scholar
Frydman J, Bromage HE, Tempst P, Hartl FU. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol. 1999;6:697–705.
Article
CAS
Google Scholar
Hoffmann A, Bukau B, Kramer G. Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta. 2010;1803(6):650–61.
Article
CAS
Google Scholar
Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature. 2004;431:590–6.
Article
CAS
Google Scholar
Kandror O, Goldberg AL. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA. 1997;94:4978–81.
Article
CAS
Google Scholar
Piette F, D’Amico S, Struvay C, Mazzucchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol. 2010;76(1):120–32.
Article
CAS
Google Scholar
Kobayashi M, Nomura M, Fujita Y, Okamoto T, Ohmomo S. Influence of lacto-coccal plasmid on the specific growth rate of host cells. Lett Appl Microbiol. 2002;35:403–8.
Article
CAS
Google Scholar
Lee K, Moon SH. Growth kinetics of Lactococcus lactis ssp. diacetylactis harboring different plasmid content. Curr Microbiol. 2003;47:17–21.
Article
CAS
Google Scholar
Rosen R, Ron EZ. Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev. 2002;21:244–65.
Article
CAS
Google Scholar
Kusukawa N, Yura T. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 1988;2:874–82.
Article
CAS
Google Scholar
Yura T, Nagai H, Mori H. Regulation of the heat-shock response in bacteria. AnnuRev Microbiol. 1993;47:321–50.
Article
CAS
Google Scholar
Malakar P, Venkatesh KV. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol. 2012;93:2543–9.
Article
CAS
Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.
Article
CAS
Google Scholar
Sambrook J, Russell DW. Molecular Cloning: A laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Salvi A, Carrupt PA, Mayer JM, Testa B. Esterase-like activity of human serum albumin toward prodrug of nicotinic. Drug Metab Dispos. 1997;25(4):395–8.
CAS
Google Scholar
Tomar AK, Kumar S, Chhillar S, Kumaresan A, Singh S, Yadav S. Human serum albumin and prolactin inducible protein complex enhances sperm capacitation in vitro. J Proteins Proteom. 2016;7(2):107–13.
Google Scholar