Krings U, Berger RG. Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol. 1998;49(1):1–8.
Article
CAS
Google Scholar
Feron G, Wache Y. 1.16 microbial biotechnology of food flavor production. In: Pometto A, Shetty K, Paliyath G, Levin R, editors. Food Biotechnology, 2nd ed. Boca Raton: CRC Press; 2006. p. 407–442.
Walton NJ, Mayer MJ, Narbad A. Vanillin. Phytochemistry. 2003;63:505–15.
Article
CAS
Google Scholar
Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–74.
Article
CAS
Google Scholar
Kunjapur AM, Tarasova Y, Prather KLJ. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc. 2014;136:11644–54.
Article
CAS
Google Scholar
Li K, Frost JW. Synthesis of vanillin from glucose. J Am Chem Soc. 1998;120:10545–6.
Article
CAS
Google Scholar
Kunjapur AM, Prather KLJ. Microbial engineering for aldehyde synthesis. Appl Environ Microbiol. 2015;81:1892–901.
Article
CAS
Google Scholar
Brochado A, Matos C, Moller B, Hansen J, Mortensen U, Patil K. Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact. 2010;9:84.
Article
Google Scholar
Brochado AR, Patil KR. Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering. Biotechnol Bioeng. 2013;110:656–9.
Article
CAS
Google Scholar
Hayden EC. Synthetic-biology firms shift focus. Nature. 2014;505:598.
Article
Google Scholar
Fischer C, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng. 2008;10:295–304.
Article
CAS
Google Scholar
Muntendam R, Melillo E, Ryden A, Kayser O. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol. 2009;84:1003–19.
Article
CAS
Google Scholar
Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. BioMed Res Int. 2010;2010:761042.
Google Scholar
Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 1999;65:24–33.
Article
CAS
Google Scholar
Struck A-W, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis biosynthesis and other biotechnological applications. ChemBioChem. 2012;13:2642–55.
Article
CAS
Google Scholar
Wessjohann L, Dippe M, Tengg M, Gruber-Khadjawi M. Methyltransferases in biocatalysis, in cascade biocatalysis: integrating stereoselective and environmentally friendly reactions. In: Riva S, W-D Fessner, editors, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; 2014.
Fox DT, Hotta K, Kim C-Y, Koppisch AT. The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase. Biochemistry. 2008;47:12251–3.
Article
CAS
Google Scholar
Berry A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol. 1996;14:250–6.
Article
CAS
Google Scholar
Draths KM, Pompliano DL, Conley DL, Frost JW, Berry A, Disbrow GL, Staversky RJ, Lievense JC. Biocatalytic synthesis of aromatics from d-glucose: the role of transketolase. J Am Chem Soc. 1992;114:3956–62.
Article
CAS
Google Scholar
Snell KD, Draths KM, Frost JW. Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J Am Chem Soc. 1996;118:5605–14.
Article
CAS
Google Scholar
Holcomb ER, Shapiro SK. Assay and regulation of S-adenosylmethionine synthetase in Saccharomyces cerevisiae and Candida utilis. J Bacteriol. 1975;121:267–71.
CAS
Google Scholar
Hondorp ER, Matthews RG. Oxidative Stress Inactivates Cobalamin-Independent Methionine Synthase (MetE) in Escherichia coli. PLoS Biol. 2004;2:e336.
Article
Google Scholar
Leichert LI, Jakob U. Protein thiol modifications visualized in vivo. PLoS Biol. 2004;2:e333.
Article
Google Scholar
Hondorp ER, Matthews RG. Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. J Bacteriol. 2009;191:3407–10.
Article
CAS
Google Scholar
Mordukhova EA, Pan J-G. Evolved cobalamin-independent methionine synthase (MetE) improves the acetate and thermal tolerance of Escherichia coli. Appl Environ Microbiol. 2013;79:7905–15.
Article
CAS
Google Scholar
Roe AJ, O’Byrne C, McLaggan D, Booth IR. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology. 2002;148:2215–22.
Article
CAS
Google Scholar
Tuite NL, Fraser KR, O’Byrne CP. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis. J Bacteriol. 2005;187:4362–71.
Article
CAS
Google Scholar
Kumar D, Gomes J. Methionine production by fermentation. Biotechnol Adv. 2005;23:41–61.
Article
CAS
Google Scholar
Willke T. Methionine production—a critical review. Appl Microbiol Biotechnol. 2014;98:9893–914.
Article
CAS
Google Scholar
Su C-H, Greene RC. Regulation of methionine biosynthesis in Escherichia coli: mapping of the metJ locus and properties of a metJ +/metJ- diploid. Proc Natl Acad Sci. 1971;68:367–71.
Article
CAS
Google Scholar
Saint-Girons I, Duchange N, Cohen GN, Zakin MM. Structure and autoregulation of the metJ regulatory gene in Escherichia coli. J Biol Chem. 1984;259:14282–5.
CAS
Google Scholar
Shoeman R, Redfield B, Coleman T, Greene RC, Smith AA, Brot N, Weissbach H. Regulation of methionine synthesis in Escherichia coli: effect of metJ gene product and S-adenosylmethionine on the expression of the metF gene. Proc Natl Acad Sci. 1985;82:3601–5.
Article
CAS
Google Scholar
Nakamori S, Kobayashi S, Nishimura T, Takagi H. Mechanism of l-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of l-methionine biosynthetic enzymes. Appl Microbiol Biotechnol. 1999;52:179–85.
Article
CAS
Google Scholar
Usuda Y, Kurahashi O. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Appl Environ Microbiol. 2005;71:3228–34.
Article
CAS
Google Scholar
Harris C. Cysteine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol. 1981;145:1031–5.
CAS
Google Scholar
Kai Y, Kashiwagi T, Ishikawa K, Ziyatdinov MK, Redkina EI, Kiriukhin MY, Gusyatiner MM, Kobayashi S, Takagi H, Suzuki E. Engineering of Escherichia coli
l-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by l-cysteine. Protein Eng Des Sel. 2006;19:163–7.
Article
CAS
Google Scholar
Coward JK, D’Urso-Scott M, Sweet WD. Inhibition of catechol-O-methyltransferase by S-adenosylhomocysteine and S-adenosylhomocysteine sulfoxide, a potential transition-state analog. Biochem Pharmacol. 1972;21:1200–3.
Article
CAS
Google Scholar
Coward JK, Slisz EP, Wu FYH. Kinetic studies on catechol O-methyltransferase, product inhibition and the nature of the catechol binding site. Biochemistry. 1973;12:2291–7.
Article
CAS
Google Scholar
Parveen N, Cornell KA. Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol. 2011;79:7–20.
Article
CAS
Google Scholar
Xavier KB, Bassler BL. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol. 2003;6:191–7.
Article
CAS
Google Scholar
Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol. 2006;188:305–16.
Article
CAS
Google Scholar
Li J, Attila C, Wang L, Wood TK, Valdes JJ, Bentley WE. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol. 2007;189:6011–20.
Article
CAS
Google Scholar
Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C, Wood TK, Manson MD, Jayaraman A. Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol. 2011;193:768–73.
Article
CAS
Google Scholar
Halliday NM, Hardie KR, Williams P, Winzer K, Barrett DA. Quantitative liquid chromatography–tandem mass spectrometry profiling of activated methyl cycle metabolites involved in LuxS-dependent quorum sensing in Escherichia coli. Anal Biochem. 2010;403:20–9.
Article
CAS
Google Scholar
Nawabi P, Bauer S, Kyrpides N, Lykidis A. Engineering E. coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl Environ Microbiol. 2011;77:8052–61.
Article
CAS
Google Scholar
Sung SH, Ahn JH. Optimization of rhamnetin production in Escherichia coli. J Microbiol Biotechnol. 2011;21:854–7.
Article
CAS
Google Scholar
Kim BG, Joe EJ, Ahn JH. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnol Lett. 2010;32:579–84.
Article
CAS
Google Scholar
Leonard E, Chemler J, Lim KH, Koffas MA. Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol. 2006;70:85–91.
Article
CAS
Google Scholar
Jeon YM, Kim BG, Ahn JH. Biological synthesis of 7-O-methyl apigenin from naringenin using Escherichia coli expressing two genes. J Microbiol Biotechnol. 2009;19:491–4.
Article
CAS
Google Scholar
Malla S, Koffas MA, Kazlauskas RJ, Kim BG. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol. 2012;78:684–94.
Article
CAS
Google Scholar
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
Google Scholar
Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. In: Current protocols in molecular biology. Wiley; 2001.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2006(2):0008.
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.
Article
CAS
Google Scholar
Tseng H-C, Martin CH, Nielsen DR, Prather KLJ. Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol. 2009;75:3137–45.
Article
CAS
Google Scholar
Solomon KV, Moon TS, Ma B, Sanders TM, Prather KLJ. Tuning primary metabolism for heterologous pathway productivity. ACS Synth Biol. 2013;2:126–35.
Article
CAS
Google Scholar
Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD. Modular engineering of l-tyrosine production in Escherichia coli. Appl Environ Microbiol. 2012;78:89–98.
Article
CAS
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
Article
CAS
Google Scholar
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol. 2011;7:535.
Article
Google Scholar
Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc. 2007;2:727–38.
Article
CAS
Google Scholar
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinksi DC, Bordbar A, Lewis NE, Rahmanian S, Kang J. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0. Nat Protoc. 2011;6:1290–307.
Article
CAS
Google Scholar
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28:245–8.
Article
CAS
Google Scholar