Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518:27–9.
Article
CAS
Google Scholar
Kochuparambil ST, Litzow MR. Novel antibody therapy in acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2014;9:165–73.
Article
Google Scholar
Kim CH, Axup JY, Lawson BR, Yun H, Tardif V, Choi SH, Zhou Q, Dubrovska A, Biroc SL, Marsden R, Pinstaff J, Smider VV, Schultz PG. Bispecific small molecule-antibody conjugate targeting prostate cancer. Proc Natl Acad Sci USA. 2013;110:17796–801.
Article
CAS
Google Scholar
Alvarenga LM, Muzard J, Ledreux A, Bernard C, Billiald P. Colorimetric engineered immunoprobe for the detection and quantification of microcystins. J Immunol Methods. 2014;406:124–30.
Article
CAS
Google Scholar
Liu JL, Zabetakis D, Walper SA, Goldman ER, Anderson GP. Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. J Immunol Methods. 2014;411:37–42.
Article
CAS
Google Scholar
Schlegel S, Rujas E, Ytterberg AJ, Zubarev RA, Luirink J, de Gier J-W. Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact. 2013;12:24.
Article
CAS
Google Scholar
Ow DS, Lim DY, Nissom PM, Camattari A, Wong VV. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Fact. 2010;9:22.
Article
CAS
Google Scholar
Sonoda H, Kumada Y, Katsuda T, Yamaji H. Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia
coli. J Biosci Bioeng. 2011;111:465–70.
Article
CAS
Google Scholar
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009;8:26.
Article
CAS
Google Scholar
de Marco A. Recent contributions in the field of the recombinant expression of disulfide bonded protein in bacteria. Microb Cell Fact. 2012;11:129.
Article
CAS
Google Scholar
Mahgoub IO. Expression and characterization of a functional single-chain variable fragment (scFv) protein recognizing MCF7 breast cancer cells in E. coli cytoplasm. Biochem Genet. 2012;50:625–41.
Article
CAS
Google Scholar
Napathorn SC, Kuroki M, Kuroki M. High expression of fusion proteins consisting of a single-chain variable fragment antibody against a tumor-associated antigen and interleukin-2 in Escherichia coli. Anticancer Res. 2014;34:3937–46.
CAS
Google Scholar
Markiv A, Beatson R, Burchell J, Durvasula RV, Kang AS. Expression of recombinant multi-coloured fluorescent antibodies in gor−/trxB−
E. coli cytoplasm. BMC Biotechnol. 2011;11:117.
Article
CAS
Google Scholar
Zarschler K, Witecy S, Kapplusch F, Foerster C, Stephan H. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microb Cell Fact. 2013;12:97.
Article
CAS
Google Scholar
Veggiani G, de Marco A. Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Prot Expr Purif. 2011;79:111–4.
Article
CAS
Google Scholar
Djender S, Schneider A, Beugnet A, Crepin R, Even Desrumeaux K, Romani C, Moutel S, Perez F, de Marco A. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact. 2014;13:140.
Article
CAS
Google Scholar
Simmons LC, Reilly D, Klimowski L, Raju S, Meng G, Sims P, Hong S, Shields RL, Damico LA, Rancatore P, Yansura DG. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods. 2002;263:133–47.
Article
CAS
Google Scholar
Makino T, Skretas G, Kang T-H, Georgiou G. Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies. Metab Eng. 2011;13:241–51.
Article
CAS
Google Scholar
Aune TEV, Bakke I, Drabløs F, Lale R, Brautaset T, Valla S. Direct evolution of the transcription factor Xlys for the development of improved expression systems. Microb Biotechnol. 2010;3:38–47.
Article
CAS
Google Scholar
Makino T, Skretas G, Georgiou G. Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact. 2011;10:32.
Article
CAS
Google Scholar
Miethe S, Meyer T, Wöhl-Bruhn S, Frenzel A, Schirrmann T, Dübel S, Hust M. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEX™ bioreactor. J Biotechnol. 2013;163:105–11.
Article
CAS
Google Scholar
Ukkonen K, Veijola J, Vasala A, Neubauer P. Effect of culture medium. Host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microb Cell Fact. 2013;12:73.
Article
CAS
Google Scholar
Bu D, Zhou Y, Tang J, Jing F, Zhang W. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli. Protein Expr Purif. 2013;92:203–7.
Article
CAS
Google Scholar
Kumada Y, Takase Y, Sasaki E, Kishimoto M. High-throughput, high-level production of PS-tag-fused single-chain Fvs by microplate-based culture. J Biosci Bioeng. 2011;111:569–73.
Article
CAS
Google Scholar
Kumada Y, Ishikawa Y, Fujiwara Y, Takeda R, Miyamoto R, Niwa D, Momose S, Kang B, Kishimoto M. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate. J Immunol Methods. 2014;411:1–10.
Article
CAS
Google Scholar
Kumada Y, Hamasaki K, Nakagawa A, Sasaki E, Shirai T, Okumura M, Inoue M, Kishimoto M. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding. J Immunol Methods. 2013;400–401:70–7.
Article
CAS
Google Scholar
Della Cristina P, Castagna M, Lombardi A, Barison E, Tagliabue G, Ceriotti A, Koutris I, Di Leandro L, Giansanti F, Vago R, Ippoliti R, Flavell SU, Flavell DJ, Colombatti M, Fabbrini MS. Systematic comparison of single-chain Fv antibody-fusion toxin constructs containing Pseudomonas Exotoxin A or saporin produced in different microbial expression systems. Microb Cell Fact. 2015;14:19.
Article
CAS
Google Scholar
Lizak C, Fan YY, Weber TC, Aebi M. N-Linked glycosylation of antibody fragments in Escherichia coli. Bioconjug Chem. 2011;22:488–96.
Article
CAS
Google Scholar
Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, Yin G. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. MAbs. 2015;7:231–42.
Article
CAS
Google Scholar
Cai Q, Hanson JA, Steiner AR, Tran C, Masikat MR, Chen R, Zawada JF, Sato AK, Hallam TJ, Yin G. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnol Prog. 2015;31:823–31.
Article
CAS
Google Scholar
Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarstrom Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L, Boren T, Marcotte H, Hammarstrom L. Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis. 2006;194:1580–8.
Article
Google Scholar
Álvarez B, Krogh-Andersen K, Tellgren-Roth C, Martínez N, Günaydın G, Lin Y, Martín MC, Álvarez MA, Hammarström L, Marcotte H. An EPS-deficient mutant of Lactobacillus rhamnosus GG efficiently displays a protective llama antibody fragment against rotavirus on its surface. Appl Environ Microbiol. 2015;81:5784–93.
Article
CAS
Google Scholar
Pant N, Marcotte H, Hermans P, Bezemer S, Frenken L, Johansen K, Hammarström L. Lactobacilli producing bispecific llama-derived anti-rotavirus proteins in vivo for rotavirus-induced diarrhea. Future Microbiol. 2011;6:383–93.
Article
CAS
Google Scholar
Günaydin G, Alvarez B, Lin Y, Hammarström L, Marcotte H. Co-expression of anti-rotavirus proteins (llama VHH antibody fragments) in Lactobacillus: development an functionality of vectors containing two expression cassettes in tandem. Plos One. 2014;9:e96409.
Article
CAS
Google Scholar
Shkoporov AN, Khokhlova EV, Savochkin KA, Kafarskaia LI, Efimov BA. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum. FEMS Microbiol Lett. 2015;362:fnv083.
Article
CAS
Google Scholar
Martin MC, Pant N, Ladero V, Günaydin G, Andersen KK, Alvarez B, Martínez N, Alvarez MA, Hammarström L, Marcotte H. Integrative expression system for delivery of antibody fragments by lactobacilli. Appl Environ Microbiol. 2011;77:2174–9.
Article
CAS
Google Scholar
Giuliani M, Parrilli E, Sannino F, Apuzzo G, Marino G, Tutino ML. Soluble recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol. 2015;1258:243–57.
Article
CAS
Google Scholar
Giuliani M, Parrilli E, Sannino F, Apuzzo G, Marino G, Tutino ML. Recombinant production of a single-chain antibody fragment in Pseudoalteromonas haloplanktis TAC125. Appl Microbiol Biotechnol. 2014;98:4887–95.
Article
CAS
Google Scholar
Mizukami M, Tokunaga H, Onishi H, Ueno Y, Hanagata H, Miyazaki N, Kiyose N, Ito Y, Ishibashi M, Hagihara Y, Arakawa T, Miyauchi A, Tokunaga M. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expr Purif. 2015;105:23–32.
Article
CAS
Google Scholar
Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, Ishibashi M, Miyauchi A, Tsumoto K, Arakawa T. Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner. Appl Microbiol Biotechnol. 2013;97:8569–80.
Article
CAS
Google Scholar
Onishi H, Mizukami M, Hanagata H, Tokunaga M, Arakawa T, Miyauchi A. Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system. Protein Expr Purif. 2013;91:184–91.
Article
CAS
Google Scholar
David F, Steinwand M, Hust M, Bohle K, Ross A, Dübel S, Franco-Lara E. Antibody production in Bacillus megaterium: strategies and physiological implications of scaling from microtiter plates to industrial bioreactors. Biotechnol J. 2011;6:1516–31.
Article
CAS
Google Scholar
Yim SS, An SJ, Choi JW, Ryu AJ, Jeong KJ. High-level secretory production of recombinant single-chain antibody fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98:273–84.
Article
CAS
Google Scholar
Dammeyer T, Steinwand M, Krüger SC, Dübel S, Hust M, Timmis KN. Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact. 2011;10:11.
Article
CAS
Google Scholar
Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood. 2013;122:705–14.
Article
CAS
Google Scholar
Michon C, Kuczkowska K, Langella P, Eijsink VG, Mathiesen G, Chatel JM. Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact. 2015;14:95.
Article
Google Scholar
De Marni M, Monegal A, Venturini S, Vinati S, Carbone R, de Marco A. Antibody purification-independent microarrays (PIM) by direct bacteria spotting on TiO2-treated slides. Methods. 2012;56:317–25.
Article
CAS
Google Scholar
Gray SA, Weigel KM, Ali IK, Lakey AA, Capalungan J, Domingo GJ, Cangelosi GA. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens. PLoS One. 2012;7:e32042.
Article
CAS
Google Scholar
Wang DD, Su MM, Sun Y, Huang SL, Wang J, Yan WQ. Expression, purification and characterization of a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen in Pichia pastoris. Protein Expr Purif. 2012;86:75–81.
Article
CAS
Google Scholar
Wan L, Zhu S, Zhu J, Yang H, Li S, Li Y, Cheng J, Lu X. Production and characterization of a CD25-specific scFv-Fc antibody secreted from Pichia pastoris. Appl Microbiol Biotechnol. 2013;97:3855–63.
Article
CAS
Google Scholar
Anuleejun S, Palaga T, Katakura Y, Kuroki M, Kuroki M, Napathorn SC. Optimal production of a fusion protein consisting of a single-chain variable fragment antibody against a tumor-associated antigen and interleukin-2 in fed-batch culture of Pichia pastoris. Anticancer Res. 2014;34:3925–35.
CAS
Google Scholar
Khatri NK, Gocke D, Trentmann O, Neubauer P, Hoffmann F. Single-chain antibody fragment production in Pichia pastoris: benefits of prolonged pre-induction glycerol feeding. Biotechnol J. 2011;6:452–62.
Article
CAS
Google Scholar
Parker SA, Diaz IL, Anderson KA, Batt CA. Design, production, and characterization of a single-chain variable fragment (ScFv) derived from the prostate specific membrane antigen (PSMA) monoclonal antibody J591. Protein Expr Purif. 2013;89:136–45.
Article
CAS
Google Scholar
Jafari R, Sundström BE, Holm P. Optimization of production of the anti-keratin 8 single-chain Fv TS1-218 in Pichia pastoris using design of experiments. Microb Cell Fact. 2011;10:34.
Article
CAS
Google Scholar
Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng. 2009;103:1192–201.
Article
CAS
Google Scholar
Pleckaityte M, Zvirbliene A, Sezaite I, Gedvilaite A. Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin. Microb Cell Fact. 2011;10:109.
Article
CAS
Google Scholar
Marshall CJ, Grosskopf VA, Moehling TJ, Tillotson BJ, Wiepz GJ, Abbott NL, Raines RT, Shusta EV. An evolved Mxe GyrA intein for enhanced production of fusion proteins. ACS Chem Biol. 2015;10:527–38.
Article
CAS
Google Scholar
Naumann JM, Küttner G, Bureik M. Human 20α-hydroxysteroid dehydrogenase (AKR1C1)-dependent biotransformation with recombinant fission yeast Schizosaccharomyces pombe. J Biotechnol. 2010;150:161–70.
Article
CAS
Google Scholar
Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol. 2006;43:426–35.
Article
CAS
Google Scholar
Ji X, Lu W, Zhou H, Han D, Yang L, Wu H, Li J, Liu H, Zhang J, Cao P, Zhang S. Covalently dimerized Camelidae antihuman TNFa single-domain antibodies expressed in yeast Pichia pastoris show superior neutralizing activity. Appl Microbiol Biotechnol. 2013;97:8547–58.
Article
CAS
Google Scholar
Joosten V, Lokman C, van den Hondel C, Punt PJ. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact. 2003;2:1.
Article
Google Scholar
Gorlani A, Hulsik DL, Adams H, Vriend G, Hermans P, Verrips T. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Protein Eng Del Sel. 2012;25:39–46.
Article
CAS
Google Scholar
Bazl MR, Rasaee MJ, Foruzandeh M, Rahimpour A, Kiani J, Rahbarizadeh F, Alirezapour B, Mohammadi M. Production of chimeric recombinant single domain antibody-green fluorescent fusion protein in Chinese hamster ovary cells. Hybridoma. 2007;26:1–9.
Article
CAS
Google Scholar
Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol. 2013;13:52.
Article
CAS
Google Scholar
Hisada H, Tsusumi H, Ishida H, Hata Y. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Appl Microbiol Biotechnol. 2013;97:761–6.
Article
CAS
Google Scholar
Klatt S, Konthur Z. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact. 2012;11:97.
Article
CAS
Google Scholar
Jørgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P. Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarentolae. Microb Cell Fact. 2014;13:9.
Article
CAS
Google Scholar
Kurasawa JH, Shestopal SA, Jha NK, Ovanesov MV, Lee TK, Sarafanov AG. Insect cell-based expression and characterization of a single-chain variable antibody fragment directed against blood coagulation factor VIII. Protein Expr Purif. 2013;88:201–6.
Article
CAS
Google Scholar
Gomez-Sebastian S, Nuňez SC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R, Kahl A, Wigdorovitz A, Parreňo V, Escribano JM. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol. 2012;12:59.
Article
CAS
Google Scholar
Abe M, Yuki Y, Kurokawa S, Mejima M, Kuroda M, Park EJ, Scheller J, Nakanishi U, Kiyono H. A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody suppresses collagen-induced arthritis in mice. J Biotechnol. 2014;175:45–52.
Article
CAS
Google Scholar
Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv. 2015. pii: S0734-9750(15)00075-0.
Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci USA. 2007;104:1430–5.
Article
CAS
Google Scholar
De Wilde K, De Buck S, Vanneste K, Depicker A. Recombinant antibody production in Arabidopsis seeds triggers an unfolded protein response. Plant Physiol. 2013;161:1021–33.
Article
CAS
Google Scholar
Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S, Smet A, Roose K, Schepens B, Descamps FJ, Fiers W, Muyldermans S, Depicker A, Saelens X. Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol. 2014;88:8278–96.
Article
CAS
Google Scholar
Richard G, Meyers AJ, McLean MD, Arbabi-Ghahroudi M, MacKenzie R, Hall JC. In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PlosOne. 2013;8:e69495.
Article
CAS
Google Scholar
Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H. Expression of antibody fragments with a controlled N-glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of Arabidopsis. Plant Physiol. 2011;155:2036–48.
Article
CAS
Google Scholar
De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. Plant Biotechnol J. 2013;11:1006–16.
Article
CAS
Google Scholar
De Meyer T, Laukens B, Nolf J, Van Lerberge E, De Rycke R, Debeuckelaer A, De Buck S, Callewaert N, Depicker A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. Plant Biotechnol J. 2015. doi:10.1111/pbi.12330.
Google Scholar
Teh Y-HA, Kavannagh TA. High-level expression of Camelid nanobodies in Nicotiana benthaniana. Transgenic Res. 2010;19:575–86.
Article
CAS
Google Scholar
Lentz EM, Garaicoechea L, Alfano EF, Parreño V, Wigdorovitz A, Bravo-Almonacid FF. Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco. Planta. 2012;236:703–14.
Article
CAS
Google Scholar
Winichayakul S, Scott RW, Roldan M, Hatier JH, Livingston S, Cookson R, Curran AC, Roberts NJ. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density. Plant Physiol. 2013;162:626–39.
Article
CAS
Google Scholar
Ritala A, Leelavathi S, Oksman-Caldentey KM, Reddy VS, Laukkanen ML. Recombinant barley-produced antibody for detection and immunoprecipitation of the major bovine milk allergen, β-lactoglobulin. Transgenic Res. 2014;23:477–87.
Article
CAS
Google Scholar
Huether CM, Lienhart O, Baur A, Stemmer C, Gorr G, Reski R, Decker EL. Glyco-engineering of moss lacking plant specific sugar residues. Plant Biol. 2005;7:292–9.
Article
CAS
Google Scholar
Lai H, He J, Hurtado J, Stahnke J, Fuchs A, Mehlhop E, Gorlatov S, Loos A, Diamond MS, Chen Q. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol J. 2014;12:1098–107.
Article
CAS
Google Scholar
Decker EL, Reski R. Glycoprotein production in moss bioreactors. Plant Cell Rep. 2012;31:453–60.
Article
CAS
Google Scholar
Schuster M, Jost W, Mudde GC, Wiederkum S, Schwager C, Janzek E, Altmann F, Stadlmann J, Stemmer C, Gorr G. In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol J. 2007;2:700–8.
Article
CAS
Google Scholar
Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield SP. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng. 2013;110:2826–35.
Article
CAS
Google Scholar
Yajima W, Verma SS, Shah S, Rahman MH, Liang Y, Kav NN. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. N Biotechnol. 2010;27:816–21.
Article
CAS
Google Scholar
Cervera M, Esteban O, Gil M, Gorris MT, Martínez MC, Peña L, Cambra M. Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Res. 2010;19:1001–15.
Article
CAS
Google Scholar
Brar HK, Bhattacharyya MK. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants. Mol Plant Microbe Interact. 2012;25:817–24.
Article
CAS
Google Scholar
Tokuhara D, Álvarez B, Mejima M, Hiroiwa T, Takahashi Y, Kurokawa S, Kuroda M, Oyama M, Kozuka-Hata H, Nochi T, Sagara H, Aladin F, Marcotte H, Frenken LG, Iturriza-Gómara M, Kiyono H, Hammarström L, Yuki Y. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest. 2013;123:3829–38.
Article
CAS
Google Scholar
https://en.wikipedia.org/wiki/Golden_rice. Accessed 4 July 2015.
Zimmermann J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kipriyanov SM. Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol. 2009;9:79.
Article
CAS
Google Scholar
Sheoran AS, Dimitriev IP, Kashentseva EA, Cohen O, Mukherjee J, Debatis M, Shearer J, Tremblay JM, Beamer G, Curiel DT, Shoemaker CB, Tzipori S. Adenovirus vector expressing Stx1/Stx2-neutralizing agent protects piglets infected with Escherichia coli O157:H7 against fatal systemic intoxication. Infection Immunity. 2015;83:286–91.
Article
CAS
Google Scholar
De Vooght L, Caljon G, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Fact. 2014;13:156.
Article
CAS
Google Scholar
De Vooght L, Caljon G, Stijlemans B, De Beatselier P, Coosemans M, Van Den Abbeele J. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microb Cell Fact. 2012;11:23.
Article
CAS
Google Scholar
Barbi T, Drake PM, Drever M, van Dolleweerd CJ, Porter AR, Ma JK. Generation of transgenic plants expressing plasma membrane-bound antibodies to the environmental pollutant microcystin-LR. Transgenic Res. 2011;20:701–7.
Article
CAS
Google Scholar
Serruys B, Van Houtte F, Verbrugghe P, Leroux-Roels G, Vanlandschoot P. Llama-derived single-domain intrabodies inhibit secretion of hepatitis B virions in mice. Hepatology. 2009;49:39–49.
Article
CAS
Google Scholar
Serruys B, Van Houtte F, Farhoudi-Moghadam A, Leroux-Roels G, Vanlandschoot P. Production, characterization and in vitro testing of HBcAg-specific VHH antibodies. J Gen Virol. 2010;91:643–52.
Article
CAS
Google Scholar
Matz J, Herate C, Bouchet J, Dusetti N, Gayet O, Baty D, Benichou S, Chemes P. Selection of intracellular single-domain antibodies targeting the HIV-1 Vpr protein by cytoplasmic yeast two-hybrid system. PLoS One. 2014;9:e113729.
Article
CAS
Google Scholar
Newnham LE, Wright MJ, Holdsworth G, Kostarelos K, Robinson MK, Rabbitts TH, Lawson AD. Functional inhibition of β-catenin-mediated Wnt signaling by intracellular VHH antibodies. MAbs. 2015;7:180–91.
Article
CAS
Google Scholar
Boons E, Li G, Vanstreels E, Vercruysse T, Pannecouque C, Vandamme A-M, Daelemans D. A stably expressed llama single-domain intrabody targeting Rev displays broad-spectrum anti-HIV activity. Antiviral Res. 2014;112:91–102.
Article
CAS
Google Scholar
Olichon A, Surey T. Selection of genetically encoded fluorescent single domain antibodies engineered for efficient expression in Escherichia coli. J Biol Chem. 2007;282:36314–20.
Article
CAS
Google Scholar
Mukhtar MM, Li S, Li W, Wan T, Mu Y, Wei W, Kang L, Rasool ST, Xiao Y, Zhu Y, Wu J. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int J Biochem Cell Biol. 2009;41:554–60.
Article
CAS
Google Scholar
Fu X, Gao X, He S, Huang D, Zhang P, Wang X, Zhang R, Dang R, Yin S, Du E, Yang Z. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2). PLoS One. 2013;8:e56222.
Article
CAS
Google Scholar
Pellis M, Pardon E, Zolghadr K, Rothbauer U, Vincke C, Kinne J, Dierynck I, Hertogs K, Leonhardt H, Messens J, Muyldermans S, Conrath K. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Arch Biochem Biophys. 2012;526:114–23.
Article
CAS
Google Scholar
Monegal A, Ami D, Martinelli C, Huang H, Aliprandi M, Capasso P, Francavilla C, Ossolengo G, de Marco A. Immunological applications of single domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel. 2009;22:273–80.
Article
CAS
Google Scholar
Beasley MD, Niven KP, Winnall WR, Kiefel BR. Bacterial cytoplasmic display platform Retained Display (ReD) identifies stable human germline antibody frameworks. Biotechnol J. 2015;10:783–9.
Article
CAS
Google Scholar
Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol. 2004;22:1161–5.
Article
CAS
Google Scholar
Olichon A, Schweizer D, Muyldermans S, de Marco A. Heating represents a rapid purification method for recovering correctly folded thermo tolerant VH and VHH domains. BMC Biotechnol. 2007;7:7.
Article
CAS
Google Scholar
Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem. 2008;283:3639–54.
Article
CAS
Google Scholar
Dudgeon K, Famm K, Christ D. Sequence determinants of protein aggregation in human VH domains. Protein Eng Des Sel. 2009;22:217–20.
Article
CAS
Google Scholar
Zabetakis D, Anderson GP, Bayya N, Goldman ER. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody. PLoS One. 2013;8:e77678.
Article
CAS
Google Scholar
Saez NJ, Nozach H, Blemont M, Vincentelli R. High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp. 2014;89:e51464.
Google Scholar
Busso D, Peleg Y, Heidebrecht T, Romier C, Jacobovitch Y, Dantes A, Salim L, Troesch E, Schuetz A, Heinemann U, Folkers GE, Geerlof A, Wilmanns M, Polewacz A, Quedenau C, Büssow K, Adamson R, Blagova E, Walton J, Cartwright JL, Bird LE, Owens RJ, Berrow NS, Wilson KS, Sussman JL, Perrakis A, Celie PH. Expression of protein complexes using multiple Escherichia coli protein co-expression systems: a benchmarking study. J Struct Biol. 2011;175:159–70.
Article
CAS
Google Scholar
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit. 2011;24:892–914.
Article
CAS
Google Scholar
Blanco-Toribio A, Lacadena J, Nuñez-Prado N, Álvarez-Cienfuegos A, Villate M, Compte M, Sanz L, Blanco FJ, Álvarez-Vallina L. Efficient production of single-chain fragment variable-based N-terminal trimerbodies in Pichia pastoris. Microb Cell Fact. 2014;13:116.
Article
CAS
Google Scholar
Picanco-Castro V, de Freitas MC. Bomfim Ade S, de Sousa Russo EM: Patents in therapeutic recombinant protein production using mammalian cells. Recent Pat Biotechnol. 2014;8:165–71.
Article
CAS
Google Scholar
Raynal B, Lenormand P, Baron B, Hoos S, England P. Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact. 2014;13:180.
Article
CAS
Google Scholar
Danieli T, Lebendiker M, de Marco A. The Trip Advisor guide to the protein science world: a proposal to improve the awareness concerning the quality of recombinant proteins. BMC Res Notes. 2014;7:585.
Article
CAS
Google Scholar
Chambers SP, Swalley SE. Designing experiments for high-throughput protein expression. Methods Mol Biol. 2009;498:19–29.
Article
CAS
Google Scholar
Lu X, Bergelson S. Development of a sensitive potency assay to measure the anti-proliferation effect of an anti-HER2 antibody. J Immunol Methods. 2014;415:80–5.
Article
CAS
Google Scholar
Agarabi CD, Schiel JE, Lute SC, Chavez BK, Boyne MT 2nd, Brorson KA, Khan MA, Read EK. Bioreactor process parameter screening utilizing a plackett-burman design for a model monoclonal antibody. J Pharm Sci. 2015;104:1919–28.
Article
CAS
Google Scholar
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog. 2014;30:571–83.
Article
CAS
Google Scholar
Xie J, Horton M, Zorman J, Antonello JM, Zhang Y, Arnold BA, Secore S, Xoconostle R, Miezeiewski M, Wang S, Price CE, Thiriot D, Goerke A, Gentile MP, Skinner JM, Heinrichs JH. Development and optimization of a high-throughput assay to measure neutralizing antibodies against Clostridium difficile binary toxin. Clin Vaccine Immunol. 2014;21:689–97.
Article
CAS
Google Scholar