Sahdev S, Khattar SK, Saini KS: Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008, 307: 249-264.
Article
CAS
Google Scholar
Rinas U, Boone TC, Bailey JE: Characterization of inclusion bodies in recombinant Escherichia coli producing high levels of porcine somatotropin. J Biotechnol. 1993, 28: 313-320.
Article
CAS
Google Scholar
Rinas U, Hoffmann F, Betiku E, Estape D, Marten S: Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol. 2007, 127: 244-257.
Article
CAS
Google Scholar
Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW: Dynamic transcriptional response of Escherichia coli to inclusion body formation. Biotechnol Bioeng. 2014, 111 (5): 980-999.
Article
CAS
Google Scholar
Williams DC, Van Frank RM, Muth WL, Burnett JP: Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science. 1982, 215: 687-689.
Article
CAS
Google Scholar
Bowden GA, Paredes AM, Georgiou G: Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnol. 1991, 9: 725-730.
Article
CAS
Google Scholar
Khodabakhsh F, Zia MF, Moazen F, Rabbani M, Sadeghi HM: Comparison of the cytoplasmic and periplasmic production of reteplase in Escherichia coli. Prep Biochem Biotechnol. 2013, 43: 613-623.
Article
CAS
Google Scholar
Carrio M, Villaverde A: Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol. 2005, 187: 3599-3601.
Article
CAS
Google Scholar
Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S: Amyloid-like properties of bacterial inclusion bodies. J Mol Biol. 2005, 347: 1025-1037.
Article
CAS
Google Scholar
Carrio M, Cubarsi R, Villaverde A: Fine architecture of bacterial inclusion bodies. FEBS Lett. 2000, 471: 7-11.
Article
CAS
Google Scholar
Garcia-Fruitos E: Inclusion bodies: a new concept. Microb Cell Fact. 2010, 9: 80-
Article
CAS
Google Scholar
Luo J, Leeman M, Ballagi A, Elfwing A, Su Z, Janson JC, Wahlund KG: Size characterization of green fluorescent protein inclusion bodies in E. coli using asymmetrical flow field-flow fractionation-multi-angle light scattering. J Chromatogr A. 2006, 1120: 158-164.
Article
CAS
Google Scholar
Peternel S, Jevsevar S, Bele M, Gaberc-Porekar V, Menart V: New properties of inclusion bodies with implications for biotechnology. Biotechnol Appl Biochem. 2008, 49: 239-246.
Article
CAS
Google Scholar
Peternel S, Komel R: Active protein aggregates produced in Escherichia coli. Int J Mol Sci. 2011, 12: 8275-8287.
Article
CAS
Google Scholar
Tustian AD, Salte H, Willoughby NA, Hassan I, Rose MH, Baganz F, Hoare M, Titchener-Hooker NJ: Adapted ultra scale-down approach for predicting the centrifugal separation behavior of high cell density cultures. Biotechnol Prog. 2007, 23: 1404-1410.
Article
CAS
Google Scholar
de Groot NS, Ventura S: Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. 2006, 580: 6471-6476.
Article
CAS
Google Scholar
de Groot NS, Ventura S: Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol. 2006, 125: 110-113.
Article
CAS
Google Scholar
Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, Ventura S: Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta. 2008, 1783: 1815-1825.
Article
CAS
Google Scholar
Oberg K, Chrunyk BA, Wetzel R, Fink AL: Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochem. 1994, 33: 2628-2634.
Article
CAS
Google Scholar
Przybycien TM, Dunn JP, Valax P, Georglou G: Secondary structure characterization of beta-lactamase inclusion bodies. Protein Engin. 1994, 7: 131-136.
Article
CAS
Google Scholar
Rudolph R, Lilie H: In vitro folding of inclusion body proteins. FASEB J. 1996, 10: 49-56.
CAS
Google Scholar
Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V: Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog. 2005, 21: 632-639.
Article
CAS
Google Scholar
Cano-Garrido O, Rodriguez-Carmona E, Díez-Gil C, Vazquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, Garcia-Fruitos E: Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater. 2013, 9: 6134-6142.
Article
CAS
Google Scholar
Ferrer-Miralles N, Villaverde A: Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Fact. 2013, 12: 113-
Article
CAS
Google Scholar
Garcia-Fruitos E, Seras-Franzoso J, Vazquez E, Villaverde A: Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering. Nanotechnology. 2010, 21: 205101-
Article
CAS
Google Scholar
Garcia-Fruitos E, Vazquez E, Gonzalez-Montalban N, Ferrer-Miralles N, Villaverde A: Analytical approaches for assessing aggregation of protein biopharmaceuticals. Curr Pharm Biotechnol. 2011, 12: 1530-1536.
Article
CAS
Google Scholar
Garcia-Fruitos E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A: Bacterial inclusion bodies: making gold from waste. Trends Biotechnol. 2012, 30: 65-70.
Article
CAS
Google Scholar
Liovic M, Ozir M, Zavec AB, Peternel S, Komel R, Zupancic T: Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells. Microb Cell Fact. 2012, 11: 67-
Article
CAS
Google Scholar
Talafova K, Hrabarova E, Chorvat D, Nahalka J: Bacterial inclusion bodies as potential synthetic devices for pathogen recognition and a therapeutic substance release. Microb Cell Fact. 2013, 12: 16-
Article
CAS
Google Scholar
Vazquez E, Villaverde A: Microbial biofabrication for nanomedicine: biomaterials, nanoparticles and beyond. Nanomedicine (Lond). 2013, 8: 1895-1898.
Article
CAS
Google Scholar
Espargaro A, Castillo V, de Groot NS, Ventura S: The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case. J Mol Biol. 2008, 378: 1116-1131.
Article
CAS
Google Scholar
Espargaro A, Sabate R, Ventura S: Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Lett. 2008, 582: 3669-3673.
Article
CAS
Google Scholar
Espargaro A, Villar-Pique A, Sabate R, Ventura S: Yeast prions form infectious amyloid inclusion bodies in bacteria. Microb Cell Fact. 2012, 11: 89-
Article
CAS
Google Scholar
Margreiter G, Messner P, Caldwell KD, Bayer K: Size characterization of inclusion bodies by sedimentation field-flow fractionation. J Biotechnol. 2008, 138: 67-73.
Article
CAS
Google Scholar
Margreiter G, Schwanninger M, Bayer K, Obinger C: Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-beta-lactamase. Biotechnol J. 2008, 3: 1245-1255.
Article
CAS
Google Scholar
Doyle SA: Screening for the expression of soluble recombinant protein in Escherichia coli. Methods Mol Biol. 2005, 310: 115-121.
Article
CAS
Google Scholar
Galloway CA, Sowden MP, Smith HC, Galloway CA, Sowden MP, Smith HC: Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques. 2003, 34: 524-526. 528, 530
CAS
Google Scholar
Schein CH: Optimizing protein folding to the native state in bacteria. Curr Opin Biotechnol. 1991, 2: 746-750.
Article
CAS
Google Scholar
Vasina JA, Peterson MS, Baneyx F: Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol Prog. 1998, 14: 714-721.
Article
CAS
Google Scholar
Xu HM, Zhang GY, Ji XD, Cao L, Shu L, Hua ZC: Expression of soluble, biologically active recombinant human endostatin in Escherichia coli. Protein Expr Purif. 2005, 41: 252-258.
Article
CAS
Google Scholar
Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M: Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J. 2011, 278: 2408-2418.
Article
CAS
Google Scholar
Valdez-Cruz NA, Caspeta L, Perez NO, Ramirez OT, Trujillo-Roldan MA: Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact. 2010, 9: 18-
Article
CAS
Google Scholar
Valdez-Cruz NA, Ramirez OT, Trujillo-Roldan MA: Molecular responses of Escherichia coli caused by heat stress and recombinant protein production during temperature induction. Bioeng Bugs. 2011, 2: 105-110.
Article
Google Scholar
Babu KR, Swaminathan S, Marten S, Khanna N, Rinas U: Production of interferon-alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol. 2000, 53: 655-660.
Article
CAS
Google Scholar
Schmidt M, Babu KR, Khanna N, Marten S, Rinas U: Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J Biotechnol. 1999, 68: 71-83.
Article
CAS
Google Scholar
Tabandeh F, Shojaosadati SA, Zomorodipour A, Khodabandeh M, Sanati MH, Yakhchali B: Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli. Biotechnol Lett. 2004, 26: 245-250.
Article
CAS
Google Scholar
Schlieker C, Bukau B, Mogk A: Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J Biotechnol. 2002, 96: 13-21.
Article
CAS
Google Scholar
Strandberg L, Enfors SO: Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol. 1991, 57: 1669-1674.
CAS
Google Scholar
de la Fuente J, Rodriguez M, Montero C, Redondo M, Garcia-Garcia JC, Mendez L, Serrano E, Valdes M, Enriquez A, Canales M, Ramos E, Boue O, Machado H, Lleonart R: Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal. 1999, 15: 143-148.
Article
CAS
Google Scholar
de la Fuente J, Almazan C, Canales M, Perez de la Lastra JM, Kocan KM, Willadsen P: A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007, 8: 23-28.
Article
Google Scholar
Arcon-Chaidez FJ, Boppana VD, Hagymsi AT, Adler AJ, Wikel SK: A novel sphingomyelinase-like enzyme in Ixodes scapularis tick saliva drives host CD4+ T cells to express IL-4. Parasite Immunol. 2009, 31: 210-219.
Article
CAS
Google Scholar
Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo ARR, Anderson JM, Ferreira BR, Ribeiro JMC, Moré DD, Augusto Mendes Maia A, Valenzuela JG, Garcia GR, De Miranda Santos IK: Rhipicephalus (Boophilus) microplus: Clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol. 2010, 124: 428-435.
Article
CAS
Google Scholar
Khalilzadeh R, Mohammadian-Mosaabadi J, Bahrami A, Nazak-Tabbar A, Nasiri-Khalili MA, Amouheidari A: Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli. J Ind Microbiol Biotechnol. 2008, 35: 1643-1650.
Article
CAS
Google Scholar
Kim CK, Choi JH, Lee SB, Lee SM, Oh JW: Expression and purification of recombinant human granulocyte colony-stimulating factor in fed-batch culture of Escherichia coli. Appl Biochem Biotechnol. 2014, 172 (5): 2425-2435.
Article
CAS
Google Scholar
Zhou Y, Ma X, Hou Z, Xue X, Meng J, Li M, Jia M, Luo X: High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production. Protein Expr Purif. 2012, 85: 38-43.
Article
CAS
Google Scholar
Slonczewski JL, Rosen BP, Alger JR, Macnab RM: pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A. 1981, 78: 6271-6275.
Article
CAS
Google Scholar
Khalilzadeh R, Shojaosadati SA, Maghsoudi N, Mohammadian-Mosaabadi J, Mohammadi MR, Bahrami A, Maleksabet N, Nassiri-Khalilli MA, Ebrahimi M, Naderimanesh H: Process development for production of recombinant human interferon-gamma expressed in Escherichia coli. J Ind Microbiol Biotechnol. 2004, 31: 63-69.
Article
CAS
Google Scholar
Losen M, Frolich B, Pohl M, Büchs J: Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog. 2004, 20: 1062-1068.
Article
CAS
Google Scholar
Carrio M, Corchero JL, Villaverde A: Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett. 1998, 169: 9-15.
Article
CAS
Google Scholar
Shekunov B, Chattopadhyay P, Tong H, Chow A: Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007, 24: 203-227.
Article
CAS
Google Scholar
Upadhyay AK, Murmu A, Singh A, Panda AK: Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS One. 2012, 7: e33951-
Article
CAS
Google Scholar
Vázquez-Fernández E, Alonso J, Pastrana MA, Ramos A, Stitz L, Vidal E, Dynin I, Petsch B, Silva CJ, Requena JR: Structural organization of mammalian prions as probed by limited proteolysis. PLoS One. 2012, 7: e50111-
Article
CAS
Google Scholar
Tsumoto K, Ejima D, Kumagai I, Arakawa T: Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif. 2003, 28: 1-8.
Article
CAS
Google Scholar
DeLellis RA, Glenner GG, Ram JS: Histochemical observations on amyloid with reference to polarization microscopy. J Histochem Cytochem. 1968, 16: 663-665.
Article
CAS
Google Scholar
Glenner GG, Eanes ED, Page DL: The relation of the properties of Congo red-stained amyloid fibrils to the -conformation. J Histochem Cytochem. 1972, 20 (10): 821-826.
Article
CAS
Google Scholar
Klunk WE, Pettegrew JW, Abraham DJ: Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem. 1989, 37: 1273-1281.
Article
CAS
Google Scholar
Biancalana M, Makabe K, Koide A, Koide S: Aromatic cross-strand ladders control the structure and stability of beta-rich peptide self-assembly mimics. J Mol Biol. 2008, 383: 205-213.
Article
CAS
Google Scholar
Levine H: Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993, 2 (3): 404-410.
Article
CAS
Google Scholar
Naiki H, Higuchi K, Hosokawa M, Takeda T: Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal Biochem. 1989, 177: 244-249.
Article
CAS
Google Scholar
Levine AD, Rangwala SH, Horn NA, Peel MA, Matthews BK, Leimgruber RM, Manning JA, Bishop BF, Olins PO: High level expression and refolding of mouse interleukin 4 synthesized in Escherichia coli. J Biol Chem. 1995, 270: 7445-7452.
Article
CAS
Google Scholar
Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R: Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. 2008, 7: 34-
Article
CAS
Google Scholar
Garcia-Fruitos E, Aris A, Villaverde A: Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol. 2007, 73: 289-294.
Article
CAS
Google Scholar
Hoffmann F, Rinas U: Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol. 2004, 89: 143-161.
CAS
Google Scholar
Thomson NM, Saika A, Ushimaru K, Sangiambut S, Tsuge T, Summers DK, Sivaniah E: Efficient production of active polyhydroxyalkanoate synthase in Escherichia coli by coexpression of molecular chaperones. Appl Environ Microbiol. 2013, 79: 1948-1955.
Article
CAS
Google Scholar
Barrow CJ, Yasuda A, Kenny PTM, Zagorski MG: Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. analysis of circular dichroism spectra. J Mol Biol. 1992, 225 (4): 1075-1093.
Article
CAS
Google Scholar
Strandberg L, Veide A, Enfors SO: Production of the hybrid protein staphylococcal protein A/Escherichia coli β-galactosidase with E. coli. J Biotechnol. 1987, 6: 225-238.
Article
CAS
Google Scholar
Ramos-Cerrillo B, Olvera A, Odell GV, Zamudio F, Paniagua-Solis J, Alagon A, Stock RP: Genetic and enzymatic characterization of sphingomyelinase D isoforms from the North American fiddleback spiders Loxosceles boneti and Loxosceles reclusa. Toxicon. 2004, 44: 507-514.
Article
CAS
Google Scholar
Nielsen EH, Nybo M, Svehag SE: Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol. 1999, 309: 491-496.
Article
CAS
Google Scholar
Schrodel A, de Marco A: Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem. 2005, 6: 10-
Article
CAS
Google Scholar
Kraus E, Femfert U: Proteinase K from the mold Tritirachium album Limber. specificity and mode of action. Hoppe Seylers Z Physiol Chem. 1976, 357: 937-947.
Article
CAS
Google Scholar
Wu CC, MacCoss MJ, Howell KE, Yates JR: A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol. 2003, 21: 532-538.
Article
CAS
Google Scholar
Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS: Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochem. 1991, 30: 7672-7680.
Article
CAS
Google Scholar
Hubbard SJ, Beynon RJ, Thornton JM: Assessment of conformational parameters as predictors of limited proteolytic sites in native protein structures. Protein Eng. 1998, 11: 349-359.
Article
CAS
Google Scholar
Taglicht D, Padan E, Oppenheim AB, Schuldiner S: An alkaline shift induces the heat shock response in Escherichia coli. J Bacteriol. 1987, 169 (2): 885-887.
CAS
Google Scholar
Slonczewski JL, Macnab RM, Alger JR, Castle AM: Effects of pH and repellent tactic stimuli on protein methylation levels in Escherichia coli. J Bacteriol. 1982, 152: 384-399.
CAS
Google Scholar
Zilberstein D, Agmon V, Schuldiner S, Padan E: Escherichia coli intracellular pH, membrane potential, and cell growth. J Bacteriol. 1984, 158: 246-252.
CAS
Google Scholar
Martinez KA, Kitko RD, Mershon JP, Adcox HE, Malek KA, Berkmen MB, Slonczewski JL: Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. Appl Environ Microbiol. 2012, 78: 3706-3714.
Article
CAS
Google Scholar
Wilks JC, Slonczewski JL: pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J Bacteriol. 2007, 189: 5601-5607.
Article
CAS
Google Scholar
Saito H, Kobayashi H: Bacterial responses to alkaline stress. Sci Prog. 2003, 86: 277-282.
Article
Google Scholar
Padan E, Bibi E, Ito M, Krulwich TA: Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta. 2005, 1717 (2): 67-88.
Article
CAS
Google Scholar
Gale EF, Epps HMR: The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem J. 1942, 36: 600-619.
Article
CAS
Google Scholar
Blankenhorn D, Phillips J, Slonczewski JL: Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol. 1999, 181 (7): 2209-2216.
CAS
Google Scholar
Bordi C, Théraulaz L, Méjean V, Jourlin-Castelli C: Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol Microbiol. 2003, 48 (1): 211-223.
Article
CAS
Google Scholar
Yohannes E, Barnhart DM, Slonczewski JL: pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol. 2004, 186 (1): 192-199.
Article
CAS
Google Scholar
Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL: Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 2006, 6: 89-
Article
CAS
Google Scholar
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA: Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol. 2009, 55: 1-79. 317
Article
CAS
Google Scholar
Maurer LM, Yohannes E, BonDurant SS, Radmacher M, Slonczewski JL: pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005, 187: 304-319.
Article
CAS
Google Scholar
Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL: pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol. 2002, 184 (15): 4246-4258.
Article
CAS
Google Scholar
Yu J, Xiao J, Ren X, Lao K, Xie XS: Probing gene expression in live cells, one protein molecule at a time. Science. 2006, 311: 1600-1603.
Article
CAS
Google Scholar
Trujillo-Roldán MA, Peña C, Ramirez OT, Galindo E: Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnol Prog. 2001, 17: 1042-1048.
Article
CAS
Google Scholar
Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E: Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact. 2010, 9: 71-
Article
CAS
Google Scholar
Rodriguez-Carmona E, Villaverde A, Garcia-Fruitos E: How to break recombinant bacteria: does it matter?. Bioeng Bugs. 2011, 2: 222-225.
Article
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685.
Article
CAS
Google Scholar
Mollenhauer HH: Plastic embedding mixtures for use in electron microscopy. Stain Technol. 1964, 39: 111-114.
CAS
Google Scholar
Castro-Acosta R, Rodriguez-Limas W, Valderrama B, Ramirez O, Palomares L: Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb Cell Fact. 2014, 13 (1): 25-
Article
CAS
Google Scholar
Seras-Franzoso J, Peebo K, Garcia-Fruitos E, Vázquez E, Rinas U, Villaverde A: Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomater. 2014, 10 (3): 1354-1359.
Article
CAS
Google Scholar
Díez-Gil C, Krabbenborg S, Garcia-Fruitos E, Vazquez E, Rodríguez-Carmona E, Ratera I, Ventosa N, Seras-Franzoso J, Cano-Garrido O, Ferrer-Miralles N, Villaverde A, Veciana J: The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials. 2010, 31 (22): 5805-5812.
Article
CAS
Google Scholar
Datta I, Gautam S, Gupta MN: Microwave assisted solubilization of inclusion bodies. Sustain Chem Process. 2013, 1: 2-
Article
CAS
Google Scholar