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Abstract

Background: Inclusion bodies (IBs) are aggregated proteins that form clusters when protein is overexpressed in
heterologous expression systems. IBs have been considered as non-usable proteins, but recently they are being
used as functional materials, catalytic particles, drug delivery agents, immunogenic structures, and as a raw material
in recombinant therapeutic protein purification. However, few studies have been made to understand how culture
conditions affect the protein aggregation and the physicochemical characteristics that lead them to cluster. The
objective of our research was to understand how pH affects the physicochemical properties of IBs formed by the
recombinant sphingomyelinase-D of tick expressed in E. coli BL21-Gold (DE3) by evaluating two pH culture strategies.

Results: Uncontrolled pH culture conditions favored recombinant sphingomyelinase-D aggregation and IB formation.
The IBs of sphingomyelinase-D produced under controlled pH at 7.5 and after 24 h were smaller (<500 nm) than those
produced under uncontrolled pH conditions (>500 nm). Furthermore, the composition, conformation and β-structure
formation of the aggregates were different. Under controlled pH conditions in comparison to uncontrolled conditions,
the produced IBs presented higher resistance to denaturants and proteinase-K degradation, presented β-structure, but
apparently as time passes the IBs become compacted and less sensitive to amyloid dye binding.

Conclusions: The manipulation of the pH has an impact on IB formation and their physicochemical characteristics.
Particularly, uncontrolled pH conditions favored the protein aggregation and sphingomyelinase-D IB formation. The
evidence may lead to find methodologies for bioprocesses to obtain biomaterials with particular characteristics,
extending the application possibilities of the inclusion bodies.
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Introduction
Bacteria like E. coli have been a successful cellular model
to produce useful recombinant proteins in modern bio-
technology [1]. Nevertheless, when heterologous protein
over-expression occurs, an inefficient folding could occur,
which together with the shortage of chaperones may pro-
mote protein aggregation [2,3]. Those aggregates are called
inclusion bodies [4,5], and can be formed in the cytoplas-
mic or periplasmic area [6,7]. IBs are dynamic reservoirs
that contain a large amount of recombinant protein,
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various host proteins like chaperones, among other com-
ponents of the cytoplasm [4,8]. IBs are highly hydrated
dense particles of porous structure [9,10], their surface var-
ies from rough to smooth [6], and their size is normally in
the range of 50 to 700 nm, having spherical, cylindrical or
ellipsoidal teardrop shapes [10-15].
It has been demonstrated that inside an IB there are

heterologous and host proteins combining native-like
structures with partially folded and misfolded proteins
[13,16-21]. The IB formation and its maintenance involve a
complex network of intracellular responses related to cul-
ture conditions, leading to complex and stable structures
sometimes showing bioactivity [13,22]. Due to their differ-
ent physicochemical properties, IBs have been proposed
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for various uses, such as catalysts, support materials, drug
delivery agents, cell therapy, and immunogens, and their re-
cent application has become an important new topic in biol-
ogy, medicine and biotechnology [11,23-30]. However, the
study of their physicochemical properties is a recent area,
and few reports have been published about that [18,31-33].
The IB characteristics, such as size, geometry, com-

position, and conformation, are associated with the
host strain employed, culture conditions, and medium,
and also the recombinant inducer used [6,13,25,34,35].
Margreiter et al. [35] reported that in fed cultures of E.
coli K12 producer of β-lactamase, the size of the IBs
increased over the cultivation time (an increase of
200 nm after 25 h). The IB size was also affected by the
different concentrations of IPTG, decreasing with the
decrease in IPTG concentration [34,35]. Importantly,
an analysis by sedimentation field-flow fractionation
(sedFFF) determined that cultures with part-induction
strategies resulted in broader IB size distributions and
higher overall protein yields [34]. By using asymmetrical
flow field-flow fractionation–multi-angle light scattering
(AsFlFFF-MALS), IBs of green fluorescent protein were
about 700 nm irrespectively of the induction times and
IPTG concentrations in cultures at 30°C, but in cultures
at 37°C the IB size is determined by the induction time
[12]. Furthermore, it has been reported that culture time
increases the resistance of IB to trypsin degradation [10],
implying differences in protein conformation inside them.
The culture time has also been associated to the IB shape,
finding that early-culture-time IBs were spherical, and at
the end of culture IBs were cylindrical or spherical [14].
Different culture strategies have been used to prevent

protein aggregation, but scarce approaches are proposed
to produce IBs with determined properties [27]. For ex-
ample, a culture temperature decrease often improves
protein solubility as well as decreases the IB size [36-40].
Meanwhile, the protein accumulation in IB is favored at
temperatures above 37°C due to the augmentation in
hydrophobic interactions and β-sheet contents [13,41-43].
Thus IB become more stable to chemical denaturation
and proteolysis when the temperature increases [16].
Nevertheless, the activity in aggregates inversely correlates
to the temperature [16]. In thermoinducible systems, the
IB formation has also been attributed to the increase in re-
combinant protein synthesis rate and mRNA overexpres-
sion [43], recombinant protein amount [42-46], and
activation of some heat shock proteins that could favor
the disorder in folding reactions [3,42,43,47]. Furthermore,
IB formation is favored by shake flask conditions using
chemical [13] or thermo-inducible [48] recombinant strains.
Importantly, it has been demonstrated that under un-
controlled pH conditions using a thermo-inducible
strain cultured in shake flasks, the pH declined to 4.8
and caused an increase of IB formation [48]. Likewise,
under uncontrolled conditions in bioreactors, IBs were
also formed. However, it was described that under con-
trolled pH conditions the IB aggregation decreased
about 50% [48].
The tick Boophilus microplus (known also as the cattle

tick or southern cattle tick) is an economically important
parasite found in a variety of livestock species. This is
globally distributed with an important presence in Asia,
parts of Australia, Madagascar, Southeastern Africa, the
Caribbean, South and Central America and Mexico
[49,50]. Tick saliva contains numerous molecules like
sphingomyelinase-D (SMD) that might modulate host
immune responses [51] and combined with other pro-
teins has been proposed as blood meal strategy for the
tick [52]. The SMD from tick B. microplus has a molecu-
lar weight of 33.1 kDa, a conserved structure of (α/β)8,
and a theoretical pI of 6.04. Since small quantities of
SMD are produced per tick, its recombinant production is
biotechnologically important to determine the mecha-
nisms involved in its participation in blood feeding, to de-
velop new antisera against this protein and the possible
future development of a control against tick infestations.
Nowadays, several bioprocesses accumulate high per-

centage of recombinant protein in IBs to facilitate large-
scale recovery by centrifugation [53-55]. Hence, it is im-
portant to understand how culture conditions modify
the aggregation properties inside IBs and how they
maintain certain characteristics to extract active proteins
or proteins with determined conformations. Therefore,
in this work we studied the effect of uncontrolled pH
cultures versus controlled physiological pH (7.5) cul-
tures, on the physicochemical properties of the IBs pro-
duced in E. coli, which heterologously produce SMD
from the saliva of tick B. microplus, as a protein model.

Results
Variations in pH affect the growth and recombinant
protein production
The effects of the pH variation in cultures carried out at
a controlled pH (7.5 ± 0.1) and uncontrolled pH on bio-
mass growth, total protein and rSMD yields were evalu-
ated (Figure 1). By controlling the external pH at 7.5 ±
0.1, the cytoplasmic pH is maintained in the same range
simulating the physiological E. coli conditions [56]. In all
cultures, the dissolved oxygen tension was controlled at
30% (with respect to air saturation) in order to avoid
oxygen limitations and organic acids overproduction
[57,58]. Glucose was consumed at the same rates by
controlled and uncontrolled pH cultures, and a small
concentration of lactic acid was detected (<0.3 g/L) in
both pH strategies (data not shown). At uncontrolled pH,
the maximum biomass concentration achieved was ap-
proximately 28% higher than at controlled pH condition,
at the end of the exponential growth phase (Figure 1A).



Figure 1 Biomass growth and production of sphingomyelinase-D
(rSMD) from tick (Boophilus microplus) by a recombinant strain of
E. coli BL21-Gold (DE3). A. Kinetics of biomass growth for the
recombinant strain of E. coli BL21-Gold (DE3). In the inset, the evolution
of pH on uncontrolled cultures is shown. Data show the average and
the standard deviation of the 24 h cultures that were carried out by
quadruplicated. Cultures were carried out under controlled pH at 7.5
(open squares), and uncontrolled pH (closed circles). B. Kinetic
behavior of the total protein yield based on biomass dry weight,
after chemical induction. Data shows the average and the standard
error of duplicate determination of total protein and biomass.
C. Kinetic behavior of rSMD yield based on total protein in inclusion
bodies, after chemical induction. Data show the average and the
standard error from two samples recovered from independent cultures
(5, 7 and 9 hours of culture). The average and standard deviation from
quadruplicate cultures is shown at 24 h of culture. D. Comparative
SDS-PAGE (left) and Western blot (right) of cytoplasmic soluble proteins
and those obtained from solubilized IB (with 10% of SDS), obtained at
20 h post-induction (24 h of culture). Lanes 1 and 2, soluble and IB
proteins harvested from uncontrolled pH cultures. Lanes 3 and 4,
soluble and IB proteins from controlled pH cultures. M means molecular
weight marker standard.
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However, in both cultures a similar biomass was obtained
at the end (24 h) of cultures (4.2 ± 0.9 g/L). No lag phase
was found in both cultures, but significant differences
were observed in the specific growth rate: 1.34 ± 0.06 h−1

in uncontrolled pH cultures, and 1.21 ± 0.04 h−1 in con-
trolled pH conditions. In the inset of Figure 1A a typical
profile of the pH for said cultures under uncontrolled pH
is presented. Initially, the pH lowered down to 6.5 within
the first 3 h, then increased up to 8.5 after 6 h of culture,
and remained in this condition throughout the culture.
The chemical induction in all cultures was made at 4 h,
under uncontrolled pH cultures the induction occurred
when the pH was near 7.4 (Figure 1A).
The influence of the pH culture strategy over the total

protein yield on biomass (Yprot/biom) is shown in Figure 1B.
After induction, Yprot/biom was similar for both culture
conditions, but after 24 h almost 50% more protein was
obtained under controlled pH (0.48 ± 0.03 gprot/gbiom)
than at uncontrolled pH (0.32 ± 0.04 gprot/gbiom). The yield
behavior of the rSMD in IB (gSMD/gIB), quantified by
densitometry on gels stained with Coomassie Blue is
shown in Figure 1C. An rSMD enrichment in the IB was
obtained (0.16 ± 0.01 gSMD/gIB) at the end of pH con-
trolled cultures, while a small decrease of this yield was
observed in uncontrolled cultures (0.09 ± 0.01 gSMD/gIB).
The final differences in rSMD yield in IB can be seen
on SDS-PAGE and Western Blots (Figure 1D), between
controlled cultures (lane 4), and uncontrolled cultures
(lane 2). This data demonstrated that rSMD accumula-
tion occurs preferentially at controlled pH conditions
(Figure 1C and 1D). In addition, a reduced amount of
rSMD in the cytoplasmic soluble fraction was detected at
controlled pH cultures (lane 3). At uncontrolled pH cul-
tures no soluble rSMD was observed (lane 1, Figure 1D).
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Effects of controlled-pH and uncontrolled-pH strategies
on IB size and morphology
The effect of the pH on the IB morphology inside cells
and their size were visualized by transmission electronic
microscopy (TEM) on fixed cells (Figure 2), as has been
performed by others [13,59]. Cells were harvested 5 min
before induction, and 5 h or 20 h after induction (induc-
tion was performed at 4 h). The micrographs show
cross-sections of E. coli producing rSMD. Under uncon-
trolled pH condition the formation of aggregates was fa-
vored (Figure 2). After 5 h of induction, around 61% of
cells with at least one IB were observed in uncontrolled
pH cultures, whereas at controlled pH only 7% of cells
presented one (or more) IB.
After 20 h of induction, IB formation was observed in

both culture strategies; at uncontrolled pH conditions,
around 58% of cells presented at least one IB, in con-
trast with controlled pH where 31% of the cells con-
tained one or more IB (Figure 2). Moreover, the IBs
formed at uncontrolled pH conditions were larger; al-
most 65% of the IBs observed were ≥ 500 nm. While at
controlled pH, 65% of the IBs presented sizes smaller
than 500 nm.
A
5 min  before induction 5 h  after 

B

Figure 2 Cross-sections of E. coli bacteria producing rSMD viewed un
E. coli BL21-Gold (DE3) cells cultured under controlled pH 7.5. B. TEM micro
Cells harvested at non-induced time (left) (scale bars 2.0 μm), 5 h post-indu
1.0 μm). Inclusion bodies are marked with arrowheads.
Said differences were also observed with the analysis
of purified IBs by TEM at three culture times in both
pH strategies (Figure 3). Micrographs indicated that IB
formation in both cultures occurred at least during the
first hour after induction. During the first 5 h, the aggre-
gation was favored by forming preferentially larger IBs at
uncontrolled pH conditions, compared to smaller IBs at
controlled pH conditions, although at uncontrolled pH
small IBs were also observed (<100 nm), as is shown in
the inset in Figure 3B at 5 h. Nevertheless, at controlled
conditions large aggregates seem to be formed by joined
small IBs (Figure 3A). Differences in IB size also were
evident after 20 h of induction; being larger in size
the IBs from uncontrolled pH cultures compared to
those formed at controlled pH conditions. The inset
of Figure 3B (at 20 h) shows IBs of about 450 nm in
diameter (no pH control). It should be noted that these
IBs were recovered in the same buffer (pH 8).
In order to facilitate the understanding of the results

and their discussion, logarithmic cumulative distribu-
tions [60] of the IB hydrodynamic diameters are pre-
sented in Figure 4. The IB size of all samples follows a
unimodal log-normal distribution, as previously reported
20 h after inductioninduction

der the transmission electron microscope (TEM). A. Examination of
graphs of E. coli BL21-Gold (DE3) cells cultured under uncontrolled pH.
ction (middle), and 20 h post-induction (right) (scale bars of 0.5 and



noitcudni retfa h 02noitcudni retfa h 1 5 h after induction

A

B

Figure 3 Electron micrographs of purified rSMD IB. A. IBs from cultures under controlled pH 7.5. B. IBs purified from uncontrolled pH cultures
strategies. 1 h post-induction (left) (scale bars of 0.5 and 1.0 μm), 5 h post-induction (middle) (scale bars 2.0 μm), and 20 h post-induction (right)
(scale bars 2.0 μm). Small IBs found at 5 h post-induction (B middle inset) (scale bar represents 0.1 μm). Examination of IBs produced after 20 h of
induction (B right inset) (scale bar represents 200 nm).
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[12,61]. This IB size distribution of samples collected at
four cultures times (1, 3, 5 and 20 h after induction)
from two pH culture strategies, was measured in a Par-
ticle Sizer (Zetasizer Nano, Malvern Inst. UK, Figure 4).
The comparability was based on the maximum size
reached by 50% of the IB population (IB50), and the mean/
IB50 ratio (as described in Materials and methods).
In controlled pH cultures, the IB50 and the mean were

458 and 800 nm in diameter, respectively by the first
post-induction hour. These sizes increased up to 615
and 1112 nm after 3 h post-induction (IB50 and mean,
respectively). Then, IB50 and mean decreased after 5 h
(396 and 735 nm) and 20 h (341 and 694 nm) post-
induction. In uncontrolled pH cultures the IB50 and the
mean increased from 1 h after induction (320 and
659 nm, respectively), to 3 h (458 and 802 nm), and
remained similar from 5 h (432 and 740 nm) to 20 h (430
and 780 nm). Moreover, to have an idea of the broadness
and the deviation of the log-normal distribution of IB
sizes, the polydispersity of data calculated as the IB50/
mean was in the range of 1.6 to 2.0 in all samples.

Resistance of IB to proteinase-K degradation and its
solubilization in guanidine hydrochloride
To understand the effect of pH variations on the ag-
gregation and physical properties of IBs, the kinetics of
differential disintegration by proteinase-K [61,62] on
purified IBs recovered at different culture post-induction
times are presented in Figure 5. All experiments start
with the same protein content (150 μg/mL), and a
normalization of the absorbance was done. The IBs
formed under constant pH 7.5 at 3, 5 and 20 h were
found to be resistant to proteinase-K since only 60, 55
and 20% of disintegration, respectively, was observed
after 30 min of incubation (Figure 5A). Whereas, a rap-
idly disintegration was observed with IBs harvested at
3 h post-induction under uncontrolled pH conditions.
The end of the proteinase-K reaction in IBs collected at
3, 5 and 20 h was reached after 7, 18 and 23 min, re-
spectively (Figure 5B).
The solubilization of IBs collected at the end of

cultures using different concentrations of guanidine
hydrochloride [63] was analyzed (Figure 6). The de-
naturation profiles showed significant differences from
the addition of 1.0 M of GnCl agent. Almost a complete
solubilization of the IBs recovered from uncontrolled
pH cultures occurred at 4.0 M of GnCl, whereas the
IBs from controlled pH cultures reached 40% of
solubilization at 5.0 M of GnCl (Figure 6). Therefore,
the IBs formed under controlled conditions presented
an improved resistance to GnCl and proteinase-K
degradation.



Figure 5 Kinetics comparison of proteinase-K digestion of rSMD
IBs harvested at 3, 5 and 20 h post-induction. A. Digestion of IBs
collected under controlled pH. B. Digestion of IBs obtained from
uncontrolled pH strategies. The progressive degradation was followed
by absorbance and data were normalized. Data show the average of
triplicate experiments.

Figure 6 Solubilization profiles of purified rSMD IBs collected
at final culture time using different concentrations of
guanidinium chloride. Solubilization of rSMD IBs collected from
controlled pH conditions (filled cirles) and IBs harvested in uncontrolled
pH conditions (open circles). Graphs present the protein solubilization
quantified by 2D quant method and each experiment was performed
by triplicate.

Figure 4 Comparison of logarithmic cumulative volume (%)
distributions of the rSMD IB sizes harvested at 1, 3, 5 and 20 h
after induction under controlled pH 7.5 condition (A), and
under uncontrolled pH strategy (B). Distribution of IB size
was determined in a Particle Sizer (Zetasizer Nano). The graphs
were cut at 1300 μm because the contribution to scattering by
particles > 1300 μm in size was only approximately 3%, except
in data from controlled pH cultures at 3 h post-induction (12%).
Figures show the accumulated values ± standard deviation of
data from experiments performed by triplicate.
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Dye binding to structures in IBs produced under different
pH conditions
The conformation of proteins inside an IB has been de-
termined by binding to Congo red (CR), which recog-
nizes entities enriched in β-pleated fibrillar conformation
[64-66], and to Thioflavin-T (Th-T) which has been de-
scribed as a dye that binds to the β-sheet surface along
channels structured by “cross-strand ladders” [67-69].
Hence we determined the CR and Th-T binding proper-
ties of IBs obtained at different culture times.
The spectrum for CR alone exhibited a maximum ab-

sorbance at 490 nm [61,65] as it is shown in the insets
of Figure 7. When CR binds to amyloid material in the
IB, the signal shifts to higher wavelength from 550 to
565 nm. The comparison of the absorption spectra
shows differences between the IB produced under con-
trolled and uncontrolled pH conditions. As time in-
creases, an increase in the IB binding to CR was
observed at uncontrolled conditions (Figure 7B) showing



Figure 7 Differential spectra of Congo-Red (CR) binding to
rSMD IBs obtained from controlled (A) and uncontrolled pH
cultures (B). The rSMD IBs were isolated at 1, 3, 5 and 20 h post-
induction. CR spectra were obtained in the presence of IB showing
the absorbance shift at ~575 nm. In insets, the spectra for Congo
red alone are shown.

Figure 8 Emission spectral characteristics of Th-T binding with
rSMD IBs harvested at 1, 3, 5 and 20 h post induction. A. Th-T
spectra with IBs collected under controlled pH conditions. B. Th-T
spectra with IBs recovered from uncontrolled pH cultures. An
emission spectrum of Th-T alone is shown in A as a grey lane near
zero. Concentrations of Th-T and IBs used for assay were 75 mM and
50 μg/mL respectively.
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broad peaks at 565 nm. Whereas, IBs from controlled
pH cultures show a small shift of absorbance (Figure 7A),
indicating that both types of IBs had an amyloidogenic
nature. Two CR binding experiments were carried out
for each culture time from two different cultures.
The intercalation of Th-T into extended β-sheet of

amyloid structures in IB was measured as the enhance-
ment of the maximum fluorescence emission compared
to free Th-T dye [70]. The fluorescence spectra of Th-T
incubated with IBs harvested at different times of culture
are compared in Figure 8. The maximum fluorescence
emission was around 465 and 475 nm for controlled and
uncontrolled conditions. It can be observed that IBs
formed under uncontrolled pH conditions and recovered
1 h after induction, exhibited limited binding to Th-T,
and to CR. Furthermore, the fluorescence emission in-
creased with time, reaching a maximum intensity of
150 AU at the end of culture (Figure 8B). Nevertheless,
IBs aggregated at constant pH conditions, formed at 1 h
and 3 h after induction, presented a maximum of
fluorescence intensity of 214 and 258 AU, respectively.
Finally, the fluorescence decreased in IBs harvested after
5 h and 20 h of culture (Figure 8A).
Discussion
The formation of IBs and the nature of intermediates in-
volved in aggregation, are determined by the biochemical
properties of the proteins [9,61,71] and the environmental
production conditions [16,35,72-74]. The IB formation is
enhanced in uncontrolled pH strategies, compared to con-
trolled pH [48]. Furthermore, it has been reported that the
pH affects the tendencies of β-peptides to form amyloid
deposits in vitro [75] that display similar features with IBs
[9]. Then, the cytoplasmic pH conditions in E. coli will be
crucial in the IB formation, their secondary structural de-
terminations and their properties. Here, we presented our
main findings relative to how controlled cultures at
physiological pH (7.5) or uncontrolled pH conditions
affect the sphingomyelinase-D inclusion bodies formation
and their physical-chemical properties. We observed
protein aggregation under uncontrolled pH culture
conditions, similar to experiments reported where SpA-
β-galactosidase was expressed under thermo inducible
promoter culturing E. coli RR1 in shake flask or bio-
reactor [48,76]. In those cultures, the pH declined from
6.7 to 5.1, but in our results the pH was initially
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acidified from 7.4 to 6.8 (inset of Figure 1), and then in-
creased up to 8.5 (induction was made at pH 7.4).
To analyze the IBs size during cultures inside cells and

purified IBs we used TEM, which was complemented
with DLS, considering that DLS only provides an insight
to the “hydrodynamic diameter” of the IB and not in its
form [12,23,25,61], i.e. from spheres to ellipsoids up to
the rod like shapes (Figures 2 and 3). Under controlled
physiological pH conditions (7.5), the rSMD aggregation
to form IBs was slow and their sizes were smaller com-
pared to those formed under uncontrolled pH condi-
tions (Figures 2, 3, and 4). Moreover, at constant pH,
active rSMD in a soluble form was obtained (Figure 1D),
which was detected qualitatively (data not show) by the
assay of sphingomyelinase activity [77]. It is important
to note that although the percentage of rSMD in inclu-
sion bodies was about 8 to 16% in the two conditions,
the nucleation was sufficient to cause the formation of
IBs, as has been observed by others [48]. The aggrega-
tion in large IBs at uncontrolled pH conditions was fa-
vored with culture time (Figures 2B, 3B, and 4B),
compared to those IBs formed under at controlled pH
where by the first hour of post-induction small aggre-
gates were observed, as well as at the end of the culture
(Figures 2A, 3A and 4A). This suggests that under con-
trolled pH conditions, the entry to the stationary phase
might have caused shrinkage of the IB relative to time.
In Figure 3A, IBs appear to be more compact than those
obtained in uncontrolled pH cultures. The presence of
disordered fibers (observed mainly in controlled pH)
could be due to globular protein elements forming com-
plex macro-aggregates. Similar fibers structures have
been observed previously [78,79]. In addition, the differ-
ences in IBs size probably are due to differences in nu-
cleation and IB growth properties during formation, as
well the host proteins that interact with them. Differ-
ences in the composition of IBs were observed in SDS-
PAGE at the end of cultures (Figure 1D). Then, in order
to understand the effect of pH on the IB composition
and on the host proteins involved in IB formation, it
would be interesting to perform a proteomic approach
during the post-induction processes.
The heterologous expression of sphingomyelinase-D in

E. coli under uncontrolled conditions resulted in larger
IBs, with more available protein extractable by proteinase-
K (Figure 5B), compared to the resistant nature of those
IBs produced under controlled pH conditions. Anyway,
the resistance to proteinase-K activity of the IBs produced
with any of the culture strategies increased over time.
Data obtained from proteinase-K digestion were in agree-
ment with those obtained from solubilization with guani-
dinium chloride (Figure 6). It has been described that
proteinase-K selectively cleave the peptide bond adjacent
to the carboxyl group of aliphatic and aromatic amino
acids located in hydrophilic domains as loops and α-
helical, like non-infectious cellular prion protein [80,81].
Therefore, peptide bonds located inside or close to β-
strands are partially resistant to proteolysis [82,83], as prion
proteins composed preferentially by β-sheet [62,83]. Then,
this suggests that IBs formed under constant pH presented
more β-sheet conformation. Likewise, IBs produced at
physiological (controlled) and uncontrolled pH conditions
have differences in aggregation and structure composition.
Furthermore, the IBs produced under the two pH cul-

ture strategies, showed binding to amyloid specific dyes
Th-T and CR. Particularly, the IBs formed at uncon-
trolled pH conditions presented binding to both dyes,
which increased with time. This indicates that the amy-
loidogenic characteristic of those IBs, in conjunction with
α-helix structures, β-extended conformation and random
coils, allow their rapid disintegration by proteinase-K.
Thus, the pH variation might activate the expression of
proteins related to the pH stress and homeostasis [84],
contributing to the different protein compositions of the
IBs in comparison to those produced at controlled pH
(Figure 1D, lane 2 and 4). In contrast, IBs formed under
controlled pH conditions presented low CR interaction
but showed high binding to Th-T at the initial times. After
5 h post induction the affinity for Th-T decreased. This
may indicate that the interaction of Th-T along the chan-
nels of β-sheet surfaces was diminished [9], probably due
to the IB size reduction observed by light scattering after
5 h post induction (Figure 4A), or because of a conform-
ational change that limited the Th-T interactions. Overall,
differences in CR and Th-T binding to the IBs could be
due to the variation of the aggregation at the beginning of
the IB formation, the secondary structural elements
present inside aggregates, and the arrangement of proteins
and their proportion inside the IBs.
It has been described that “non-classical” inclusion

bodies are soluble in mild denaturants concentration,
susceptible to degradation by protease and less amyloid
nature [14,22,71]. Interestingly, the IBs produced under
uncontrolled pH conditions presented a “non-classic”
nature, being less resistant to degradation by proteinase
K and GnCl, and presented less binding to Th-T, com-
pared to IBs formed under controlled conditions, which
were resistant to degradation by proteinase-K and GnCl,
and exhibit higher affinity for Th-T. Hence, these last
IBs were formed as “classical inclusion bodies”.
Different reports had demonstrated the recovery of

“non-classical” IBs with recombinant protein in active
form, produced in shake flasks under uncontrolled con-
ditions, such as pH and dissolved oxygen [25,61,71], re-
gardless of their secondary and tertiary structure. These
results are in agreement with our results in uncontrolled
cultures where the obtained IBs presented sphingomyeli-
nase activity (data not show).
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The cytoplasmic pH is normally maintained within a
range of 7.4 to 7.8 when the external pH is in the range
of 5.0 to 9.0 in suspension or 5.0 to 8.0 in adherent E.
coli cultures [56,85-88]. In adherent E. coli cultures the
cytoplasmic pH is similar to the external pH of 8.5 to
9.0 [87]. Whereas, in suspended cells at pH 9.0, E. coli
has an inverted pH differential between the external and
the internal cell membrane becoming less alkaline
[56,86,89,90]. Moreover, in suspension cultures at high
pH, proteomic data proposes that cells have strategies to
reach the pH homeostasis, including acid production
through amino acid catabolism using deaminases and
sugar fermentation that presumably release acids, which
neutralize alkalinity [91-95]. Also, it has been suggested
the inward flow of protons through cation/proton anti-
porters, the proton capture via the F1F0-ATPase, and the
reduction of cytoplasmic protons loss [56,90,96-98].
In addition, other experiments demonstrated that cell

homeostasis responses [86-88], and the recombinant
protein production process occur in a similar time order
[99]. Then, we can hypothesize that during those cell re-
sponses, cellular microenvironments favor the nucle-
ation and formation of proto-aggregates, which later
allow the formation of IBs. The alkalization of the cul-
ture medium can cause small cytoplasmic changes form-
ing environments that favor the accumulation and
precipitation of host and recombinant proteins, whose
isoelectric points are similar to the perturbed cytoplas-
mic pH. This study showed how the variation in pH due
to E. coli metabolism during recombinant expression
modified the formation of IBs beyond that aggregation
directed by physical and structural characteristics of re-
combinant proteins. Furthermore, stress proteins such as
those coded by ibpB, lon, dnaJ, dnaK, clpB, clpX and grpE,
among others [97] might be involved in maintaining pro-
teostasis (protein folding homeostasis), as a response to
recombinant protein production and pH external changes.

Conclusions
Results presented here demonstrate that under different
pH conditions, the IB formation and their characteristics
changed over the culture time. Particularly, under un-
controlled pH conditions, rSMD IBs formation was fa-
vored with non-classical IB characteristics, while those
formed under controlled conditions were more resistant
to proteinase-K degradation, a usual characteristic of
classical IB. Information presented could be useful to re-
producibly produce biomaterials with specific features,
and to develop better protein recovery processes.

Materials and methods
Chemicals and reagents
Tris buffer, glycine, sodium dodecyl sulphate, phenyl-
methylsulfonyl fluoride (PMSF), and deoxy cholic acid
were from Amresco (USA). Ammonium persulphate,
acrylamide and bis-acrylamide, TEMED and EDTA, were
from Biorad (USA). Coomassie Brilliant Blue R-250,
Nonidet-P40, DNase I, Triton X-100, Bovine Serum
Albumin (BSA), Congo red, IPTG, urea, proteinase-K,
thioflavin-T, ampicillin and kanamycin were from Sigma-
Aldrich (USA). SDS-PAGE molecular weight marker was
purchased from Fermentas Thermo Scientific (USA).
Glucose and NaCl from REASOL (Mexico), all other re-
agents were from J.T. Baker (USA). Paraformaldehyde,
glutaraldehyde, osmium tetraoxide, Epon/Araldita, uranyl
acetate and citrate were from Electron Microscopy
Sciences (USA).

Strain, plasmids and culture conditions
The coding gene for SMD from saliva of the tick Boophilus
microplus (GeneBank KJ854238) was under the control of
the phage T5 promoter in the expression plasmid pQE-30
(Qiagen, USA), and transformed in E. coli BL21-Gold
(DE3) cells. A cryovial with 2.0 mL of recombinant E. coli
(20% glycerol) with an optical density (OD 600 nm) of
1.5 AU (kindly provided by Dr. Alagón), was grown in
two 250 mL Erlenmeyer flasks with 50 mL of culture
media, at 37°C and 200 rpm overnight (C25I, New
Brunswick - Eppendorf Co. USA), in the presence of
ampicillin (50 μg/mL). All shake flasks and bioreactor
cultures were grown on Super Broth medium (3.2% w/v
peptone, 2% w/v yeast extract, and 0.5% w/v NaCl). Both
shake flasks were cultured overnight and used to inoculate
a 1.0 L bioreactor (Applikon, Netherlands) with an initial
OD 600 nm of 0.1 AU (Spectronic Genesys 20, Thermo
USA), where 1 OD was equivalent to 0.50 g dry cell weight
per liter, similar to the data obtained by Baig et al. [4].
The batch cultures were carried out at 37°C with an

operation volume of 600 mL. Dissolved oxygen tension
(DOT) was controlled at 30% (with respect to air satur-
ation) by cascade changing the agitation speed (between
200 and 900 rpm), and enriching the air with pure oxy-
gen when required, maintaining an airflow of 0.6 L/min
(1 vvm), by using a proportional-integral-derivative
(PID) control strategy [100]. The culture medium was
adjusted prior to inoculation to pH 7.5 in either of two
conditions (controlled and uncontrolled pH conditions).
In controlled cultures, pH was maintained at 7.5 by
using an automatic addition of NaOH (1 M) through an
on-off control strategy. In uncontrolled cultures, the pH
varied freely according to the cell metabolism. Foaming
was controlled by addition of silicone based antifoaming
agent (Corning®, USA), when required. DOT, temperature,
agitation, and pH were controlled by ADI-1030 and/or
ADI-1010 Biocontrollers (Applikon, Netherlands), dis-
played online and stored in a hard drive for further
analysis using the BioXpert® data acquisition program
(Applikon, Netherlands). The chemical inductor, isopropyl-
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β-D-thiogalactoside (IPTG), was added before the pre-
stationary phase at a final concentration of 0.1 mM.
Glucose and lactate were measured using YSI2900 (YSI
Life Sciences, USA). The data presented in this manu-
script show the average and the standard deviation of the
24 h cultures that were carried out by quadruplicated.

Total, soluble and IB protein separation and
quantification
The biomass was recovered by centrifugation at 7000 × g
for 10 min, at each sampling time. The cell pellet was
suspended in 50 mM TrisHCl, 100 mM NaCl, 1 mM of
EDTA and 1 mM of PMSF. The cell suspension was
sonicated in a SoniPrep150 (Sanyo-Gallen-Kamp, UK)
with an amplitude of 10 microns in 10 steps of 30 s
alternated with 30 s of rest, on ice. The lysate was
centrifuged at 8000 × g for 10 min to isolate the cyto-
plasmic soluble protein. The pellet was recovered in
0.1% of Nonidet-P40, and incubated at 4°C for 2 h and
centrifuged at 8000 × g for 10 min. Then, the pellet
was suspended in PBS and 3 μL of MgSO4 (1 M) were
added, and it was submitted to DNase I treatment for
3 h. Thereafter, IBs were recovered by centrifugation
and the pellet was washed with 0.5% Triton X-100 for
2 h at 4°C. Then the pellet was washed twice with deion-
ized water to remove the excess of salts and detergent.
The solution was centrifuged for 30 min at 8000 × g
and the solids obtained were washed 3 times with
deionized low conductivity water. Finally, the IB were
stored at -80°C [10,101,102].
The concentration of total, cytoplasmic soluble and IB

proteins was determined by 2D-Quant kit (G-Biosci-
ences, USA), following the supplier recommendations.
IBs were suspended in denaturing buffer (Tris-HCl
250 mM pH 6.8, 40% v/v glycerol and 5% v/v SDS) [103]
to measure protein concentration, and incubated at 24-
27°C for 12 h in order to obtain a complete dissolution
of the aggregates. Calibration curves were prepared
using BSA. Samples and standards were prepared at least
by duplicate and measured at 480 nm in a plate reader.

Sphingomyelinase-D protein identification and qualitative
measurement activity
The recombinant sphingomyelinase-D (rSMD) expres-
sion was confirmed by SDS-PAGE [94] and Western
Blot. Samples were collected at different times to analyze
the soluble protein as well the recombinant protein in
the IB. The 15% SDS gels were stained with Coomassie
Brilliant Blue R-250, and quantification was done by
densitometry using the Image-Lab™ software and Gel
Doc™ EZ System (Bio-Rad, USA). For Western Blot, the
cytoplasmic soluble proteins and the proteins solubilized
from IBs were separated on 15% SDS-PAGE under redu-
cing conditions. Then, they were transferred to a
polyvinylidene difluoride (PVDF) membrane (Millipore,
USA), which was blocked in buffer PBS, Tween-20
(0.5%), and BSA (3%). Incubated with 1:5000 mouse
Anti-His6-Peroxidase antibody IgG1 (Roche, USA) for
60 min at 25°C. The immunoreactive bands were de-
tected by chemiluminescence using SuperSignal West
Pico Chemiluminescent Substrate (Thermo Scientific,
USA) and visualized using the C-DIGIT blot scanner
(LI-COR, USA). Qualitative SMD activity from soluble
and IB proteins, was confirmed coupling the assay using
the substrate AMPLEX (Molecular Probes) and fluori-
metric detection as described by the manufacturer and
reported by Ramos-Cerrillo et al. [77]. Sphingomyelinase
C from Staphylococcus aureus was used as positive con-
trol and reference standard. The negative control con-
sisted in the same reaction without protein sample.

Size analysis of IBs inside cells
Morphology and size were analyzed under transmission
electron microscopy. Cell samples and IBs were taken at
different kinetics times, washed three times with 0.16 M
sodium cacodylate buffer at pH 7.2 at 4°C, fixed with 4%
paraformaldehyde and 2.5% glutaraldehyde in sodium
cacodylate buffer pH 7.4 during 2 h at 4°C. Post-fixed
samples with 1% osmium tetraoxide during 90 min at 4°C,
were rinsed twice in chilled buffer and six times in cold
distilled water. Then, samples were dehydrated in ethanol
series and embedded in Epon/Araldita [104]. Thin sec-
tions were stained with uranyl acetate and lead in citrate
and observed with a ZEISS Libra 120 plus electron micro-
scope. At least 100 cells were analyzed for each sample,
and samples were obtained from two independent cul-
tures for each pH strategy.

Size analysis of inclusion bodies by dynamic light
scattering
The hydrodynamic diameter of the IBs harvested at dif-
ferent time points after induction was determined by dy-
namic light scattering (DLS) performed in a Zetasizer
Nano ZS (Malven Inst. Ltd, Worcestershire, UK) at 173°
backscatter using a 50-μL quartz cuvette [105]. Samples
were analyzed with and without centrifugation to evalu-
ate the size and quality of the IBs by using the normal
resolution mode. Absorbance values at 350 nm were ac-
quired and samples were diluted with water to obtain an
absorbance value of 0.5 AU before carrying out the
measurement by DLS. Sizes are reported as the diameter
of the equivalent sphere of the particles analyzed [105].
DLS has been recently widely used to determine the
hydrodynamic diameter of IBs [12,23,25,61,106-108].
Each sample was measured in triplicate and the hydro-
dynamic diameter represents the mean value. Disper-
sants used in this manuscript were water and PBS
buffer. All samples were analyzed at 27°C. To evaluate
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the IB stability in the solvents used, the scattering inten-
sity and hydrodynamic diameter were monitored as a
function of time.
The IB50 was defined as the maximum size reached by

50% of the IB population, and can be seen as the statis-
tical median equal to the 50th percentile. Also, the arith-
metic mean (average) was calculated for all collected
samples. In order to measure the broadness and the de-
viation of the log-normal distribution of IB sizes we de-
fined the arithmetic mean/IB50 ratio as a form to
compare the polydispersity of the IB sizes.

Proteolytic digestion of inclusion bodies
The IBs containing rSMD harvested from two different
pH culture strategies after induction were digested using
proteinase-K at 12 μg/mL (final concentration). The pro-
teolytic digestion was carried out with 150 μg/mL of IBs
suspended in 50 mM Tris-HCl, 150 mM NaCl pH 8.0 buf-
fer, and it was monitored for 100 minutes measuring the
changes in optical density at 350 nm in UV-2450 spectro-
photometer (DU 730 Beckman coulter USA) [61].

Solubilization of purified IBs
The solubilization profile of purified IBs was determined
using different concentrations of guanidine hydrochlor-
ide (GnCl). The IBs were solubilized in the presence of
different concentrations of GnCl (0 M to 5 M), and
50 mM Tris-HCl, 5 mM DTT, pH 8.5, during 24 h
[31,32]. The initial concentration of proteins in the IBs
was in the range of 0.1 mg/ml. The IB solubilization was
determined measuring the liberation of protein by 2D-
Quant kit (G-Biosciences, USA), following the supplier
recommendations.

Amyloid specific assays of IB using dyes
A spectroscopy assay was used to determine the beta
sheet conformation inside the IB by using Congo red and
analyzing the band shift [9,61]. A total of 50 μg of protein
in IBs was diluted in buffer (10 mM sodium phosphate,
pH 7.0 containing 150 mM NaCl) with 10 μM of Congo
red. Each sample was incubated for 10 min at room
temperature before the spectra acquisition data in UV-
2450 spectrophotometer (DU 730 Beckman coulter USA).
The change in absorbance spectra was measured in the
wavelength range of 400 to 700 nm. The spectra controls
were obtained from the dye in the absence of protein, and
form protein in absence of dye, which were subtracted
from their respective problem samples [61]. The fluores-
cence from the binding of Thioflavin-T to IB was analyzed
using a spectrofluorometer Luminescence spectrometer
LS55 (Perkin Elmer Instruments, MA; USA). 50 μg/mL of
IBs were diluted in 10 mM phosphate pH 7.0 buffer,
150 mM NaCl, and 75 mM Thioflavin-T [61]. The reac-
tion product was incubated for 1 h at room temperature.
The emission spectra were recorded from 460 to 600 nm
using an excitation wavelength of 440 nm [61]. Slit widths
of 5 nm were used for both excitation and emission, and a
scan speed rate of 50 nm/min. The data were acquired
with the FLWinlab software (Perkin Elmer Instruments,
MA; USA).
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