Bills GF, Gloer JB. Biologically active secondary metabolites from the fungi. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.FUNK-0009-2016.
Article
PubMed
Google Scholar
Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019;17:167–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malit JJL, Leung HYC, Qian PY. Targeted large-scale genome mining and candidate prioritization for natural product discovery. Mar Drugs. 2022. https://doi.org/10.3390/md20060398.
Article
PubMed
PubMed Central
Google Scholar
Machado H, Tuttle RN, Jensen PR. Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol. 2017;39:136–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front Microbiol. 2019;10:294.
Article
PubMed
PubMed Central
Google Scholar
Zhuang L, Zhang H. Utilizing cross-species co-cultures for discovery of novel natural products. Curr Opin Biotechnol. 2021;69:252–62.
Article
CAS
PubMed
Google Scholar
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 2014;32:1180–204.
Article
CAS
PubMed
Google Scholar
Toghueo RMK, Sahal D, Boyom FF. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry. 2020;174:112338.
Article
CAS
PubMed
Google Scholar
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep. 2010;27:11–22.
Article
CAS
PubMed
Google Scholar
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet. 2021;22:553–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Cai G, Rong X, Wang Y, Gong K, Liu W, Wang L, Pang X, Yu L. A combination of genome mining with an OSMAC approach facilitates the discovery of and contributions to the biosynthesis of melleolides from the Basidiomycete Armillaria tabescens. J Agric Food Chem. 2022;70:12430–41.
Article
CAS
PubMed
Google Scholar
Zhang T, Pang X, Zhao J, Guo Z, He W, Cai G, Su J, Cen S, Yu L. Discovery and activation of the cryptic cluster from Aspergillus sp. CPCC 400735 for asperphenalenone biosynthesis. ACS Chem Biol. 2022;17:1524–33.
Article
CAS
PubMed
Google Scholar
Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep. 2021;38:2100–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi LP, Li XM, Li L, Li X, Wang BG. Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar Drugs. 2020. https://doi.org/10.3390/md18030160.
Article
PubMed
PubMed Central
Google Scholar
Gui C, Li Q, Mo X, Qin X, Ma J, Ju J. Discovery of a new family of Dieckmann cyclases essential to tetramic acid and pyridone-based natural products biosynthesis. Org Lett. 2015;17:628–31.
Article
CAS
PubMed
Google Scholar
Mo X, Gulder TAM. Biosynthetic strategies for tetramic acid formation. Nat Prod Rep. 2021;38:1555–66.
Article
CAS
PubMed
Google Scholar
Jiang M, Chen S, Li J, Liu L. The biological and chemical diversity of tetramic acid compounds from marine-derived microorganisms. Mar Drugs. 2020. https://doi.org/10.3390/md18020114.
Article
PubMed
PubMed Central
Google Scholar
Schobert R, Schlenk A. Tetramic and tetronic acids: an update on new derivatives and biological aspects. Bioorg Med Chem. 2008;16:4203–21.
Article
CAS
PubMed
Google Scholar
Zhang G, Zhang W, Saha S, Zhang C. Recent advances in discovery, biosynthesis and genome mining of medicinally relevant polycyclic tetramate macrolactams. Curr Top Med Chem. 2016;16:1727–39.
Article
CAS
PubMed
Google Scholar
Xu W, Cai X, Jung ME, Tang Y. Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. J Am Chem Soc. 2010;132:13604–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem. 2007;8:289–97.
Article
CAS
PubMed
Google Scholar
Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y. Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in aspergillus oryzae. Fungal Genet Biol. 2008;45:1608–15.
Article
CAS
PubMed
Google Scholar
Kato N, Nogawa T, Hirota H, Jang JH, Takahashi S, Ahn JS, Osada H. A new enzyme involved in the control of the stereochemistry in the decalin formation during equisetin biosynthesis. Biochem Biophys Res Commun. 2015;460:210–5.
Article
CAS
PubMed
Google Scholar
Maiya S, Grundmann A, Li X, Li SM, Turner G. Identification of a hybrid PKS/NRPS required for pseurotin a biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem. 2007;8:1736–43.
Article
CAS
PubMed
Google Scholar
Olano C, Gomez C, Perez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Brana AF, Mendez C, Salas JA. Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol. 2009;16:1031–44.
Article
CAS
PubMed
Google Scholar
Wei X, Chen L, Tang JW, Matsuda Y. Discovery of pyranoviolin A and its biosynthetic gene cluster in Aspergillus violaceofuscus. Front Microbiol. 2020;11:562063.
Article
PubMed
PubMed Central
Google Scholar
Sato M, Dander JE, Sato C, Hung YS, Gao SS, Tang MC, Hang L, Winter JM, Garg NK, Watanabe K, Tang Y. Collaborative biosynthesis of maleimide- and succinimide-containing natural products by fungal polyketide megasynthases. J Am Chem Soc. 2017;139:5317–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Gilchrist CLM, Lacey HJ, Crombie A, Vuong D, Pitt JI, Lacey E, Chooi YH, Piggott AM. Discovery and heterologous biosynthesis of the burnettramic acids: rare PKS-NRPS-derived bolaamphiphilic pyrrolizidinediones from an australian fungus, Aspergillus burnettii. Org Lett. 2019;21:1287–91.
Article
CAS
PubMed
Google Scholar
Guo Y, Contesini FJ, Wang X, Ghidinelli S, Tornby DS, Andersen TE, Mortensen UH, Larsen TO. Biosynthesis of calipyridone A represents a fungal 2-pyridone formation without ring expansion in Aspergillus californicus. Org Lett. 2022;24:804–8.
Article
CAS
PubMed
Google Scholar
Perveen I, Raza MA, Iqbal T, Naz I, Sehar S, Ahmed S. Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog. 2017;110:214–24.
Article
CAS
PubMed
Google Scholar
Braga RM, Padilla G, Araujo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol. 2018;44:759–78.
Article
CAS
PubMed
Google Scholar
Lahlali R, Hijri M. Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett. 2010;311:152–9.
Article
CAS
PubMed
Google Scholar
Cao PR, Zheng YL, Zhao YQ, Wang XB, Zhang H, Zhang MH, Yang T, Gu YC, Yang MH, Kong LY. Beetleane A and epicoane A: two carbon skeletons produced by Epicoccum nigrum. Org Lett. 2021;23:3274–7.
Article
CAS
PubMed
Google Scholar
Harwoko H, Lee J, Hartmann R, Mandi A, Kurtan T, Muller WEG, Feldbrugge M, Kalscheuer R, Ancheeva E, Daletos G, Frank M, Liu Z, Proksch P. Azacoccones F-H, new flavipin-derived alkaloids from an endophytic fungus Epicoccum nigrum MK214079. Fitoterapia. 2020;146:104698.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu S, Che Y, Liu X. Epicoccins. A-D, epipolythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum. J Nat Prod. 2007;70:1522–5.
Article
CAS
PubMed
Google Scholar
Wright AD, Osterhage C, Konig GM. Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem. 2003;1:507–10.
Article
CAS
PubMed
Google Scholar
Zhang T, Zhuo Y, Jia X, Liu J, Gao H, Song F, Liu M, Zhang L. Cloning and characterization of the gene cluster required for beauvericin biosynthesis in Fusarium proliferatum. Sci China Life Sci. 2013;56:628–37.
Article
CAS
PubMed
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinf. 2008;9:376.
Article
Google Scholar
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachmann BO, Ravel J. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 2009;458:181–217.
Article
CAS
PubMed
Google Scholar
Zhang T, Ren P, Chaturvedi V, Chaturvedi S. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum. Fungal Genet Biol. 2015;81:73–81.
Article
CAS
PubMed
Google Scholar
Sims JW, Fillmore JP, Warner DD, Schmidt EW. Equisetin biosynthesis in Fusarium heterosporum. Chem Commun. 2005;14:186–8.
Article
Google Scholar
Awakawa T, Yang XL, Wakimoto T, Abe I. Pyranonigrin E. A PKS-NRPS hybrid metabolite from Aspergillus niger identified by genome mining. ChemBioChem. 2013;14:2095–9.
Article
CAS
PubMed
Google Scholar
Hashimoto M, Kato H, Katsuki A, Tsukamoto S, Fujii I. Identification of the biosynthetic gene cluster for himeic acid A: a ubiquitin-activating enzyme (E1) inhibitor in aspergillus japonicus MF275. Chembiochem. 2018;19:535–9.
Article
CAS
PubMed
Google Scholar
Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio. 2018. https://doi.org/10.1128/mBio.01211-18.
Article
PubMed
PubMed Central
Google Scholar
Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC. Molecular genetic mining of the aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol. 2008;15:527–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi EH, Park SH, Kwon HJ. Genetic localization of epicoccamide biosynthetic gene cluster in Epicoccum nigrum KACC 40642. J Appl Biol Chem. 2022;65:159–66.
Article
Google Scholar
Gao SS, Zhang T, Garcia-Borras M, Hung YS, Billingsley JM, Houk KN, Hu Y, Tang Y. Biosynthesis of heptacyclic duclauxins requires extensive redox modifications of the phenalenone aromatic polyketide. J Am Chem Soc. 2018;140:6991–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun. 2021;12:3864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang HS. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. J Ind Microbiol Biotechnol. 2017;44:285–93.
Article
CAS
PubMed
Google Scholar
Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu F, Du L. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc. 2011;133:643–5.
Article
CAS
PubMed
Google Scholar
Kakule TB, Sardar D, Lin Z, Schmidt EW. Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem Biol. 2013;8:1549–57.
Article
CAS
PubMed
Google Scholar
Weber T, Laiple KJ, Pross EK, Textor A, Grond S, Welzel K, Pelzer S, Vente A, Wohlleben W. Molecular analysis of the kirromycin biosynthetic gene cluster revealed beta-alanine as precursor of the pyridone moiety. Chem Biol. 2008;15:175–88.
Article
CAS
PubMed
Google Scholar
Bihlmaier C, Welle E, Hofmann C, Welzel K, Vente A, Breitling E, Muller M, Glaser S, Bechthold A. Biosynthetic gene cluster for the polyenoyltetramic acid alpha-lipomycin. Antimicrob Agents Chemother. 2006;50:2113–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Q, Wu Z, Qu X, Liu W. Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation. J Am Chem Soc. 2012;134:17342–5.
Article
CAS
PubMed
Google Scholar
Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol. 2006;13:575–85.
Article
CAS
PubMed
Google Scholar
Kakule TB, Zhang S, Zhan J, Schmidt EW. Biosynthesis of the tetramic acids Sch210971 and Sch210972. Org Lett. 2015;17:2295–7.
Article
CAS
PubMed
Google Scholar
Guan F, Pan Y, Li J, Liu G. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci. 2017;60:958–67.
Article
CAS
PubMed
Google Scholar