Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.
CAS
PubMed
Google Scholar
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.
CAS
PubMed
PubMed Central
Google Scholar
Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.
CAS
PubMed
Google Scholar
World Health Organization. Antimicrobial resistance: global report on surveillance. 2014. https://www.who.int/publications/i/item/WHO-HSE-PED-AIP-2014.2. Accessed 14 June 2018.
Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11:95–105.
CAS
PubMed
Google Scholar
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuaa039.
Article
PubMed
Google Scholar
Meade E, Slattery MA, Garvey M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: resistance is futile? Antibiotics. 2020;9:32.
CAS
PubMed Central
Google Scholar
Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci. 2008;65:455–76.
CAS
PubMed
Google Scholar
Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem. 1993;216:281–91.
CAS
PubMed
Google Scholar
Ra SR, Qiao M, Immonen T, Pujana I, Saris PEJ. Genes responsible for nisin synthesis, regulation and immunity form a regulon of two operons and are induced by nisin in Lactoccocus lactis N8. Microbiology. 1996;142:1281–8.
CAS
PubMed
Google Scholar
Koponen O, Tolonen M, Qiao M, Wahlström G, Helin J, Saris PEJ. NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiology. 2002;148:3561–8.
CAS
PubMed
Google Scholar
Sen AK, Narbad A, Horn N, Dodd HM, Parr AJ, Colquhoun I, et al. Post-translational modification of nisin. The involvement of NisB in the dehydration process. Eur J Biochem. 1999;261:524–32.
CAS
Google Scholar
Li B, Van Der Donk WA. Identification of essential catalytic residues of the cyclase NisC involved in the biosynthesis of nisin. J Biol Chem. 2007;282:21169–75.
CAS
PubMed
Google Scholar
Okeley NM, Paul M, Stasser JP, Blackburn N, Van Der Donk WA. SpaC and NisC, the cyclases involved in subtilin and nisin biosynthesis, are zinc proteins. Biochemistry. 2003;42:13613–24.
CAS
PubMed
Google Scholar
Kuipers A, De Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJM, et al. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem. 2004;279:22176–82.
CAS
PubMed
Google Scholar
Qiao M, Saris PEJ. Evidence for a role of NisT in transport of the lantibiotic nisin produced by Lactococcus lactis N8. FEMS Microbiol Lett. 1996;144:89–93.
CAS
PubMed
Google Scholar
Van Bart Den Berg Van Saparoea H, Bakkes PJ, Moll GN, Driessen AJM. Distinct contributions of the nisin biosynthesis enzymes NisB and NisC and transporter NisT to prenisin production by Lactococcus lactis. Appl Environ Microbiol. 2008;74:5541–8.
Google Scholar
Siezen RJ, Rollema HS, Kuipers OP, De Vos WM. Homology modelling of the Lactococcus lactis leader peptidase nisp and its interaction with the precursor of the lantibiotic nisin. Protein Eng Des Sel. 1995;8:117–25.
CAS
Google Scholar
Van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos WM. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol. 1993;175:2578–88.
PubMed
PubMed Central
Google Scholar
Van Der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, De Vos WM. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem. 1994;269:3555–62.
Google Scholar
Lagedroste M, Smits SHJ, Schmitt L. Substrate specificity of the secreted nisin leader peptidase NisP. Biochemistry. 2017;56:4005–14.
PubMed
Google Scholar
Montalbán-López M, Deng J, van Heel AJ, Kuipers OP. Specificity and application of the lantibiotic protease NisP. Front Microbiol. 2018;9:160.
PubMed
PubMed Central
Google Scholar
Breukink E, Wiedemann I, Van Kraaij C, Kuipers OP, Sahl HG, De Kruijff B. Use of the cell wail precursor lipid II by a pore-forming peptide antibiotic. Science. 1999;286:2361–4.
CAS
PubMed
Google Scholar
Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, et al. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol. 1998;30:317–27.
PubMed
Google Scholar
Hsu STD, Breukink E, Tischenko E, Lutters MAG, De Kruijff B, Kaptein R, et al. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol. 2004;11:963–7.
CAS
PubMed
Google Scholar
Hasper HE, de Kruijff B, Breukink E. Assembly and stability of nisin−lipid II pores †. Biochemistry. 2004;43:11567–75.
CAS
PubMed
Google Scholar
Benkerroum N, Sandine WE. Inhibitory action of nisin against Listeria monocytogenes. J Dairy Sci. 1988;71:3237–45.
CAS
PubMed
Google Scholar
Harris LJ, Fleming HP, Klaenhammer TR. Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to nisin. J Food Prot. 1991;54:836–40.
CAS
PubMed
Google Scholar
Brumfitt W, Salton MRJ, Hamilton-Miller JMT. Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother. 2002;50:731–4.
CAS
PubMed
Google Scholar
Jensen C, Li H, Vestergaard M, Dalsgaard A, Frees D, Leisner JJ. Nisin damages the septal membrane and triggers DNA condensation in methicillin-resistant Staphylococcus aureus. Front Microbiol. 2020;11:1–8.
Google Scholar
Millette M, Dupont C, Shareck F, Ruiz MT, Archambault D, Lacroix M. Purification and identification of the pediocin produced by Pediococcus acidilactici MM33, a new human intestinal strain. J Appl Microbiol. 2008;104:269–75.
CAS
PubMed
Google Scholar
Reinseth IS, Ovchinnikov KV, Tønnesen HH, Carlsen H, Diep DB. The increasing issue of vancomycin-resistant enterococci and the bacteriocin solution. Probiotics Antimicrob Proteins. 2020;12:1203–17.
PubMed
Google Scholar
Delves-Broughton J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 1996;69:193–202.
CAS
Google Scholar
de Arauz LJ, Jozala AF, Mazzola PG, Vessoni Penna TC. Nisin biotechnological production and application: a review. Trends Food Sci Technol. 2009;20:146–54.
Google Scholar
Abbasiliasi S, Tan JSS, Tengku Ibrahim TAA, Bashokouh F, Ramakrishnan NRR, Mustafa S, et al. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv. 2017;7:29395–420.
CAS
Google Scholar
Juturu V, Wu JC. Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv. 2018;36:2187–200.
CAS
PubMed
Google Scholar
Taylor TM, Davidson PM, Zhong Q. Extraction of nisin from a 2.5% commercial nisin product using methanol and ethanol solutions. J Food Prot. 2007;70:1272–6.
CAS
PubMed
Google Scholar
Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–41.
CAS
PubMed
Google Scholar
Eggeling L, Bott M. A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:3387–94.
CAS
PubMed
Google Scholar
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, et al. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem. 2021. https://doi.org/10.1042/ebc20200134.
Article
PubMed
PubMed Central
Google Scholar
Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol. 2014;98:297–311.
PubMed
Google Scholar
Krause FS, Blombach B, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for 2-Ketoisovalerate production. Appl Environ Microbiol. 2010;76:8053–61.
CAS
PubMed
PubMed Central
Google Scholar
Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, et al. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol Bioeng. 2016;113:163–72.
CAS
PubMed
Google Scholar
Yim SS, An SJ, Choi JW, Ryu AJ, Jeong KJ. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98:273–84.
CAS
PubMed
Google Scholar
Goldbeck O, Desef DN, Ovchinnikov KV, Perez-Garcia F, Christmann J, Sinner P, et al. Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metab Eng. 2021. https://doi.org/10.1016/j.ymben.2021.09.002.
Article
PubMed
PubMed Central
Google Scholar
Sieger B, Schubert K, Donovan C, Bramkamp M. The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum. Mol Microbiol. 2013;90:966–82.
CAS
PubMed
Google Scholar
Weixler D, Goldbeck O, Seibold GM, Eikmanns BJ, Riedel CU. Towards improved resistance of Corynebacterium glutamicum against nisin. 2021. p. 2021.08.09.454123. https://www.biorxiv.org/content/10.1101/2021.08.09.454123v1
Goldbeck O, Weixler D, Eikmanns BJ, Riedel CU. In silico prediction and analysis of unusual lantibiotic resistance operons in the genus Corynebacterium. Microorganisms. 2021;9:646.
CAS
PubMed
PubMed Central
Google Scholar
Mahon MJ. pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv Biosci Biotechnol. 2011;02:132–7.
CAS
Google Scholar
Crauwels P, Schäfer L, Weixler D, Bar NS, Diep DB, Riedel CU, et al. Intracellular pHluorin as sensor for easy assessment of bacteriocin-induced membrane-damage in Listeria monocytogenes. Front Microbiol. 2018;9:3038.
PubMed
PubMed Central
Google Scholar
Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol. 2005;71:8587–96.
CAS
PubMed
PubMed Central
Google Scholar
Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl R. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum. Plasmid. 2020;112:102540.
PubMed
Google Scholar
Arii K, Kawada-Matsuo M, Oogai Y, Noguchi K, Komatsuzawa H. Single mutations in BraRS confer high resistance against nisin A in Staphylococcus aureus. MicrobiologyOpen. 2019;8:1–14.
Google Scholar
Hiron A, Falord M, Valle J, Débarbouillé M, Msadek T. Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol. 2011;81:602–22.
CAS
PubMed
Google Scholar
Kuipers OP, Beerthuyzen MM, De Ruyter PGGA, Luesink EJ, De Vos WM. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995;270:27299–304.
CAS
PubMed
Google Scholar
Kuipers OP, De Ruyter PGGA, Kleerebezem M, De Vos WM. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol. 1998;64:15–21.
CAS
Google Scholar
Plat A, Kluskens LD, Kuipers A, Rink R, Moll GN. Requirements of the engineered leader peptide of nisin for inducing modification, export, and cleavage. Appl Environ Microbiol. 2011;77:604–11.
CAS
PubMed
Google Scholar
Lagedroste M, Reiners J, Smits SHJ, Schmitt L. Systematic characterization of position one variants within the lantibiotic nisin. Sci Rep. 2019;9:1–11.
CAS
Google Scholar
Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 2004;3:608–14.
CAS
PubMed
Google Scholar
Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother. 2006;50:1753–61.
CAS
PubMed
PubMed Central
Google Scholar
Schneider N, Werkmeister K, Pischetsrieder M. Analysis of nisin A, nisin Z and their degradation products by LCMS/MS. Food Chem. 2011;127:847–54.
CAS
PubMed
Google Scholar
Cotter PD, Hill C, Ross RP. Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–88.
CAS
PubMed
Google Scholar
Li C, Bai J, Cai Z, Ouyang F. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol. 2002;93:27–34.
CAS
PubMed
Google Scholar
Özel B, Şimşek Ö, Akçelik M, Saris PEJ. Innovative approaches to nisin production. Appl Microbiol Biotechnol. 2018. https://doi.org/10.1007/s00253-018-9098-y.
Article
PubMed
Google Scholar
Shi Y, Yang X, Garg N, Van Der Donk WA. Production of lantipeptides in Escherichia coli. J Am Chem Soc. 2011;133:2338–41.
CAS
PubMed
Google Scholar
Rintala H, Graeffe T, Paulin L, Kalkkinen N, Saris PEJ. Biosynthesis of nisin in the subtilin producer Bacillus subtilis ATCC6633. Biotechnol Lett. 1993;15:991–6.
CAS
Google Scholar
van Tilburg AY, van Heel AJ, Stülke J, de Kok NAW, Rueff A-S, Kuipers OP. Mini bacillus PG10 as a convenient and effective production host for lantibiotics. ACS Synth Biol. 2020;9:1833–42.
PubMed
PubMed Central
Google Scholar
Yuksel S, Hansen JN. Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168. Appl Microbiol Biotechnol. 2007;74:640–9.
CAS
PubMed
Google Scholar
Becker J, Wittmann C. Industrial microorganisms: Corynebacterium glutamicum. Ind Microorg. 2017. https://doi.org/10.1002/9783527807796.ch6.
Article
Google Scholar
Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, et al. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol. 2013;79:6006–15.
CAS
PubMed
PubMed Central
Google Scholar
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, et al. Chassis organism from Corynebacterium glutamicum—a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J. 2015;10:290–301.
CAS
PubMed
Google Scholar
Sahl HG, Jack RW, Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem. 1995;230:827–53.
CAS
PubMed
Google Scholar
Papagianni M, Avramidis N, Filioussis G, Dasiou D, Ambrosiadis I. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor “indicator microorganism.” Microb Cell Factories. 2006;5:30.
Google Scholar
Landete JM, Langa S, Escudero C, Peirotén Á, Arqués JL. Fluorescent detection of nisin by genetically modified Lactococcus lactis strains in milk and a colonic model: application of whole-cell nisin biosensors. J Biosci Bioeng. 2020;129:435–40.
CAS
PubMed
Google Scholar
Chan WC, Leyland M, Clark J, Dodd HM, Lian LY, Gasson MJ, et al. Structure-activity relationships in the peptide antibiotic nisin: antibacterial activity of fragments of nisin. FEBS Lett. 1996;390:129–32.
CAS
PubMed
Google Scholar
Reiners J, Lagedroste M, Ehlen K, Leusch S, Zaschke-Kriesche J, Smits SHJ. The N-terminal region of nisin is important for the BceAB-type ABC transporter NsrFP from streptococcus agalactiae COH1. Front Microbiol. 2017;8:1–10.
Google Scholar
Van Heel AJ, Kloosterman TG, Montalban-Lopez M, Deng J, Plat A, Baudu B, et al. Discovery, production and modification of five novel lantibiotics using the promiscuous nisin modification machinery. ACS Synth Biol. 2016;5:1146–54.
PubMed
Google Scholar
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.
CAS
PubMed
Google Scholar
Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol. 2002;45:362–7.
CAS
PubMed
Google Scholar
McGrath S, Fitzgerald GF, van Sinderen D. Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl Environ Microbiol. 2001;67:608–16.
CAS
PubMed
PubMed Central
Google Scholar
Holo H, Nes IF. Transformation of lactococcus by electroporation. In: Nickoloff JA, editor. Electroporation protocols for microorganisms. New Jersey: Humana Press; 1995. p. 195–9.
Google Scholar
Lange J, Müller F, Takors R, Blombach B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol. 2018;11:257–63.
CAS
PubMed
Google Scholar
Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394:192–5.
PubMed
Google Scholar
Ovchinnikov KV, Chi H, Mehmeti I, Holo H, Nes IF, Diep DB. Novel group of leaderless multipeptide bacteriocins from gram-positive bacteria. Appl Environ Microbiol. 2016;82:5216–24.
CAS
PubMed
PubMed Central
Google Scholar