Mulrooey CA, O’Brien EM, Morgan BJ, Kozlowski MC. Perylenequinones: isolation, synthesis, and biological activity. Eur J Org Chem. 2012;21:3887–904.
Article
Google Scholar
Zhen J, Wu D. Novel therapeutically and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol. 1995;61:529–39.
Article
Google Scholar
Kishi T, Tahara S, Taniguchi N, Tsuda M, Tanaka C, Takahashi S. New perylenequinones from Shiraia bambusicola. Planta Med. 1991;57:376–9.
Article
CAS
Google Scholar
Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, et al. Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot. 2006;59:351–4.
Article
CAS
Google Scholar
Wu HM, Lao XF, Wang QW, Lu RR. The shiraiachromes: novel fungal perylenequinone pigments from Shiraia bambusicola. J Nat Prod. 1989;52:948–51.
Article
CAS
Google Scholar
Di W, Zhen J, Lown JW. Hypocrellins and their use in photosensitization. Photochem Photobiol. 1990;52:609–16.
Article
Google Scholar
O’Brien EM, Morgan BJ, Mulrooney CA, Carroll PJ, Kozlowski MC. Perylenequinone natural products: total synthesis of hypocrellin A. J Org Chem. 2010;75:57–68.
Article
Google Scholar
Liang XH, Cai YJ, Liao XR, Wu K, Wang L, Zhang DB, et al. Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol Res. 2009;164:9–17.
Article
CAS
Google Scholar
Daub ME, Herrero S, Chung K-R. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett. 2005;252:197–206.
Article
CAS
Google Scholar
Tong ZW, Mao LW, Liang HL, Zhang ZB, Wang Y, Yan RM, et al. Simultaneous determination of six perylenequinones in Shiraiaia sp. Slf14 by HPLC. J Liq Chromatogr Relat Technol. 2017;40:536–40.
Article
CAS
Google Scholar
Liu YX, Liu ZY, Yang YL, Wongkaew S. Isolation, screening and confirmative identification of high hypocrellin A-producing Shiraia bambusicola isolates. Khon Kaen Agric J. 2009;37:357–64.
Google Scholar
Liu B, Bao JY, Zhang ZB, Yan RM, Wang Y, Yang HL, et al. Enhanced production of perylenequinones in the endophytic fungus Shiraia sp. Slf14 by calcium/calmodulin signal transduction. Appl Microbiol Biotechnol. 2018;102:153–63.
Article
CAS
Google Scholar
Cai YJ, Liao XH, Liang XR, Ding YR, Sun J, Zhang DB. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. New Biotechnol. 2011;28:588–92.
Article
CAS
Google Scholar
Lei XY, Zhang MY, Ma YJ, Wang JW. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J Ind Microbiol Biotechnol. 2017;44:1415–29.
Article
CAS
Google Scholar
Scherlach K, Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem. 2009;7:1753–60.
Article
CAS
Google Scholar
Bode HB, Bethe B, Höfs R, Zeeck A. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem. 2002;3:619–27.
Article
CAS
Google Scholar
Abdelwahab MF, Kurtán T, Mándi A, Müller WEG, Fouad MA, Kamel MS, et al. Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Lett. 2018;59:2647–52.
Article
CAS
Google Scholar
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 2014;32:1180–204.
Article
CAS
Google Scholar
Varese GC, Portinaro S, Trotta A, Scannerini S, Luppi AM, Martinotti G. Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis. 1996;21:129–47.
Google Scholar
Citterio B, Malatesta M, Battistelli S, Marcheggiani F, Baffone W, Saltarelli R, et al. Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Can J Microbiol. 2001;47:264–8.
Article
CAS
Google Scholar
Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microb. 2015;17:2647–60.
Article
Google Scholar
Ma YJ, Lu CS, Wang JW. Effects of 5-azacytidine on growth and hypocrellin production of Shiraia bambusicola. Front Microbiol. 2018;9:2508.
Article
Google Scholar
Liao HL, Chung KR. Cellular toxicity of elsinochrome phytotoxins produced by the pathogenic fungus, Elsinoë fawcettii causing citrus scab. New Phytol. 2008;177:239–50.
Article
CAS
Google Scholar
Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GHN. Hypocrellin, from Hypocrella bambusae, is phototoxic to human immunodeficiency virus. Photochem Photobiol. 1994;60:253–5.
Article
CAS
Google Scholar
Xing MZ, Zhang XZ, Sun ZL, Zhang HY. Perylenequinones act as broad-spectrum fungicides by generating reactive oxygen species both in the dark and in the light. J Agric Food Chem. 2003;51:7722–4.
Article
CAS
Google Scholar
Yang HL, Xiao C, Ma W, He G. The production of hypocrellin colorants by submerged cultivation of the medicinal fungus Shiraia bambusicola. Dyes Pigments. 2009;82:142–6.
Article
CAS
Google Scholar
Sun CX, Ma YJ, Wang JW. Enhanced production of hypocrellin A by ultrasound stimulation in submerged cultures of Shiraia bambusicola. Ultrason Sonochem. 2017;38:214–24.
Article
CAS
Google Scholar
Sun CX, Ma YJ, Wang JW. Improved hypocrellin A production in Shiraia bambusicola by light–dark shift. J Photochem Photobiol B. 2018;182:100–7.
Article
CAS
Google Scholar
Ma YJ, Sun CX, Wang JW. Enhanced production of hypocrellin A in submerged cultures of Shiraia bambusicola by red light. Photochem Photobiol. 2019;95:812–22.
Article
CAS
Google Scholar
Oh DC, Jensen PR, Kauffman CA, Fenical W. Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem. 2005;13:5267–73.
Article
CAS
Google Scholar
Ola ARB, Thomy D, Lai DW, Brötz-Oesterhelt H, Proksch P. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod. 2013;76:2094–9.
Article
CAS
Google Scholar
Zhao N, Lin X, Qi SS, Luo ZM, Chen SL, Yan SZ. De novo transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of hypocrellin A. Int J Mol Sci. 2016;17:311.
Article
Google Scholar
Deng HX, Gao RJ, Liao XR, Cai YJ. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system. J Biotechnol. 2017;259:228–34.
Article
CAS
Google Scholar
Li YR, Xu W, Tang Y. Classification, prediction, and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem. 2010;285:22764–73.
Article
CAS
Google Scholar
Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009;106:14558–63.
Article
CAS
Google Scholar
Deng HX, Gao RJ, Liao XR, Cai YJ. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol. 2017;168:664–72.
Article
CAS
Google Scholar
Lu CS, Ma YJ, Wang JW. Lanthanum elicitation on hypocrellin A production in mycelium cultures of Shiraia bambusicola is mediated by ROS generation. J Rare Earths. 2019;37:896–903.
Article
Google Scholar
Chandelier A, Abras S, Laurent F, Debruxelles N, Cavelier M. Effect of temperature and bacteria on sporulation of Phytophthora alni in river water. Commun Agric Appl Biol Sci. 2006;71:873–80.
CAS
PubMed
Google Scholar
Chen TF, Jia XM, Ma XH, Lin HP, Zhao YH. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses. J Basic Microbiol. 2004;44:339–50.
Article
Google Scholar
Kumari D, Reddy MS, Upadhyay RC. Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp. Ann Microbiol. 2013;63:845–53.
Article
CAS
Google Scholar
Wang XM, Yang B, Wang HW, Yang T, Ren CG, Zheng HL, et al. Consequences of antagonistic interactions between endophytic fungus and bacterium on plant growth and defense responses in Atractylodes lancea. J Basic Microbiol. 2015;55:659–70.
Article
CAS
Google Scholar
Li Q, Chen C, Penttinen P, Xiong C, Zheng L, Huang W. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiology. 2016;85:531–9.
Article
CAS
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
Google Scholar
Kreig NR, Holt JG. Bergey’s manual of systematic bacteriology, vol. I. Baltimore: Williams & Wilkins; 1984.
Google Scholar
Ebell LF. Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry. 1969;8:227–33.
Article
CAS
Google Scholar
Mearns-Spragg A, Bregu M, Boyd KG, Burgess JG. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol. 1998;27:142–6.
Article
CAS
Google Scholar
Wang H, Peng L, Ding ZY, Wu JY, Shi GY. Stimulated laccase production of Pleurotus ferulae JM301 fungus by Rhodotorula mucilaginosa yeast in co-culture. Process Biochem. 2015;50:901–5.
Article
CAS
Google Scholar