Abdel-Hamid AM, Attwood MM, Guest JR. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology. 2001;147:1483–98.
Article
CAS
Google Scholar
Akesson M, Karlsson EN, Hagander P, Axelsson JP, Tocaj A. On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol Bioeng. 1999;64:590–8.
Article
CAS
Google Scholar
Arya AS, Lee SA, Eiteman MA. Differential sensitivities of the growth of Escherichia coli to acrylate under aerobic and anaerobic conditions and its effect on product formation. Biotechnol Lett. 2013;35:1839–43.
Article
CAS
Google Scholar
Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol. 2008;74:7802–8.
Article
CAS
Google Scholar
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008.
Berman KM, Cohn M. Phosphoenolpyruvate synthetase of Escherichia coli. Purification, some properties, and the role of divalent metal ions. J Biol Chem. 1970;245:5309–18.
CAS
Google Scholar
Brown T, Jones-Mortimer M, Kornberg H. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. Microbiology. 1977;102:327–36.
CAS
Google Scholar
Buckel W, Barker H. Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol. 1974;117:1248–60.
CAS
Google Scholar
Causey T, Shanmugam K, Yomano L, Ingram L. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA. 2004;101:2235–40.
Article
CAS
Google Scholar
Chang YY, Wang AY, Cronan JE Jr. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS (katF) gene. Mol Microbiol. 1994;11:1019–28.
Article
CAS
Google Scholar
Contiero J, Beatty C, Kumari S, DeSanti C, Strohl W, Wolfe A. Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol. 2000;24:421–30.
Article
CAS
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000;97:6640–5.
Article
CAS
Google Scholar
De Mey M, De Maeseneire S, Soetaert W, Vandamme E. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol. 2007;34:689–700.
Article
Google Scholar
Diaz-Ricci J, Regan L, Bailey J. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol Bioeng. 1991;38:1318–24.
Article
CAS
Google Scholar
Dittrich CR, Vadali RV, Bennett GN, San KY. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog. 2005;21:627–31.
Article
CAS
Google Scholar
Eiteman M, Chastain M. Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta. 1997;338:69–75.
Article
CAS
Google Scholar
Eiteman MA, Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 2006;24:530–6.
Article
CAS
Google Scholar
Feng X, Mouttaki H, Lin L, Huang R, Wu B, Hemme CL, He Z, Zhang B, Hicks LM, Xu J. Characterization of the central metabolic pathways in Thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis. Appl Environ Microbiol. 2009;75:5001–8.
Article
CAS
Google Scholar
Howell DM, Xu H, White RH. (R)-citramalate synthase in methanogenic archaea. J Bacteriol. 1999;181:331–3.
CAS
Google Scholar
Hua Q, Yang C, Baba T, Mori H, Shimizu K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol. 2003;185:7053–67.
Article
CAS
Google Scholar
Jensen PR, Michelsen O. Carbon and energy metabolism of atp mutants of Escherichia coli. J Bacteriol. 1992;174:7635–41.
Article
CAS
Google Scholar
Johnson DW, Eastham GR, Poliakoff M, Huddle TA. Method of producing acrylic and methacrylic acid. Google Patents; 2012.
Kao KC, Tran LM, Liao JC. A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J Biol Chem. 2005;280:36079–87.
Article
CAS
Google Scholar
Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol. 2002;184:3909–16.
Article
CAS
Google Scholar
Li M, Yao S, Shimizu K. Effect of poxB gene knockout on metabolism in Escherichia coli based on growth characteristics and enzyme activities. World J Microbiol Biotechnol. 2007;23:573–80.
Article
CAS
Google Scholar
Lin H, Castro NM, Bennett GN, San K-Y. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol. 2006;71:870–4.
Article
CAS
Google Scholar
Martínez I, Zhu J, Lin H, Bennett GN, San K-Y. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng. 2008;10:352–9.
Article
Google Scholar
Nakano K, Rischke M, Sato S, Märkl H. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol. 1997;48:597–601.
Article
CAS
Google Scholar
Nicolas C, Kiefer P, Letisse F, Körmer J, Massou S, Soucaille P, Wittmann C, Lindley ND, Portais JC. Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase. FEBS Lett. 2007;581:3771–6.
Article
CAS
Google Scholar
Noda S, Takezawa Y, Mizutani T, Asakura T, Nishiumi E, Onoe K, Wada M, Tomita F, Matsushita K, Yokota A. Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase. J Bacteriol. 2006;188:6869–76.
Article
CAS
Google Scholar
Phue J-N, Lee SJ, Kaufman JB, Negrete A, Shiloach J. Acetate accumulation through alternative metabolic pathways in ackA− pta− poxB− triple mutant in E. coli B (BL21). Biotechnol Lett. 2010;32:1897–903.
Article
CAS
Google Scholar
Risso C, Van Dien SJ, Orloff A, Lovley DR, Coppi MV. Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. J Bacteriol. 2008;190:2266–74.
Article
CAS
Google Scholar
Rose IA, Grunberg-Manago M, Korey SR, Ochoa S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954;211:737–56.
CAS
Google Scholar
Semkiv MV, Dmytruk KV, Abbas CA, Sibirny AA. Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase. BMC Biotechnol. 2014;14:42.
Article
Google Scholar
Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact. 2014;13:64.
Article
Google Scholar
U.S. EPA. Nitrogen, ammonia. Method 250.1 (Colorimetric). In: Methods for chemical analysis of water and wastes. EPA-600/4-79-020. Cincinnati: U.S. E. P. A; 1983. p. 350-1.1–350-1.4.
Vemuri G, Altman E, Sangurdekar D, Khodursky A, Eiteman M. Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006;72:3653–61.
Article
CAS
Google Scholar
Vemuri GN, Eiteman MA, Altman E. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng. 2006;94:538–42.
Article
CAS
Google Scholar
Wanner B, Wilmes-Riesenberg M. Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol. 1992;174:2124–30.
Article
CAS
Google Scholar
Wu X, Eiteman MA. Production of citramalate by metabolically engineered Escherichia coli. Biotechnol Bioeng. 2016;113:2670–5.
Article
CAS
Google Scholar
Wu X, Altman R, Eiteman MA, Altman E. Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid formation. Appl Environ Microbiol. 2014;80:2880–8.
Article
Google Scholar
Zhang K, Woodruff AP, Xiong M, Zhou J, Dhande YK. A synthetic metabolic pathway for production of the platform chemical isobutyric acid. Chemsuschem. 2011;4:1068–70.
Article
CAS
Google Scholar
Zhao J, Baba T, Mori H, Shimizu K. Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab Eng. 2004;6:164–74.
Article
CAS
Google Scholar
Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol Lett. 2013;35:2137–45.
Article
CAS
Google Scholar
Zhu Y, Eiteman MA, Altman R, Altman E. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol. 2008;74:6649–55.
Article
CAS
Google Scholar