Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JXH, Garcia A, Moody G, Zaritskaya LS, Sung C. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther. 2002;303:540–8.
Article
CAS
Google Scholar
Jones TD, Hanlon M, Smith BJ, Heise CT, Nayee PD, Sanders DA, Hamilton A, Sweet C, Unitt E, Alexander G, et al. The development of a modified human IFN-α 2b linked to the Fc portion of human IgG1 as a novel potential therapeutic for the treatment of hepatitis C virus infection. J Interferon Cytokine Res. 2004;24:560–72.
Article
CAS
Google Scholar
Brassard DL, Grace MJ, Bordens RW. Interferon-α as an immunotherapeutic protein. J Leukoc Biol. 2002;71:565–81.
CAS
Google Scholar
Shechter Y, Preciado-Patt L, Schreiber G, Fridkin M. Prolonging the half-life of human interferon-α2 in circulation: design, preparation, and analysis of (2-sulfo-9-fluorenylmethoxycarbonyl)(7)-interferon-alpha 2. Proc Natl Acad Sci USA. 2001;98:1212–7.
Article
CAS
Google Scholar
Flores MV, Hickling TP, Sreckovic S, Fidock MD, Horscroft N, Katragadda M, Savic B, Rawal J, Delpuech-Adams OE, Robas N, et al. Preclinical studies of PF-04849285, an interferon-α8 fusion protein for the treatment of HCV. Antiviral Ther. 2012;17:869–81.
Article
CAS
Google Scholar
Bitonti AJ, Dumont JA. Pulmonary administration of therapeutic proteins using an immunoglobulin transport pathway. Adv Drug Deliv Rev. 2006;58:1106–18.
Article
CAS
Google Scholar
Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015;29:215–39.
Article
CAS
Google Scholar
Goetze AM, Liu YD, Zhang ZQ, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21:949–59.
Article
CAS
Google Scholar
Rodriguez M, Perez L, Gavilondo JV, Garrido G, Bequet-Romero M, Hernandez I, Huerta V, Cabrera G, Perez M, Ramos O, et al. Comparative in vitro and experimental in vivo studies of the anti-epidermal growth factor receptor antibody nimotuzumab and its aglycosylated form produced in transgenic tobacco plants. Plant Biotechnol J. 2013;11:53–65.
Article
CAS
Google Scholar
Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–17.
Article
CAS
Google Scholar
Ying TL, Chen WZ, Gong R, Feng Y, Dimitrov DS. Soluble monomeric IgG1 Fc. J Biol Chem. 2012;287:19399–408.
Article
CAS
Google Scholar
Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14:778–809.
Article
CAS
Google Scholar
Wang L, He J, Xiao WH. Enhanced circulation half-life for human IFNα2b and IgG Fc fusion protein. Chin J Biotechnol. 2008;24:53–62.
Google Scholar
Guo Y, Kang W, Zhong Y, Li R, Li G, Shen Y, Hu S, Sun J, Xiao W. Purification and characterization of human IL-10/Fc fusion protein expressed in Pichia pastoris. Protein Expr Purif. 2012;83:152–6.
Article
CAS
Google Scholar
Guo YG, Wu J, Jia H, Chen W, Shao CS, Zhao L, Ma JJ, Li R, Zhong YJ, Fang F, et al. Balancing the expression and production of a heterodimeric protein: recombinant agkisacutacin as a novel antithrombotic drug candidate. Sci Rep. 2015;5:11730.
Article
Google Scholar
Cane S, Ponnappan S, Ponnappan U. Impairment of non-muscle myosin IIA in human CD4(+) T cells contributes to functional deficits in the elderly. Cell Mol Immunol. 2012;9:86–96.
Article
CAS
Google Scholar
Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Progr Biomed. 2010;99:306–14.
Article
Google Scholar
Zheng X, Wang J, Yang D. Antiviral therapy for chronic hepatitis B in China. Med Microbiol Immunol. 2015;204:115–20.
Article
CAS
Google Scholar
Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit. 2005;18:119–38.
Article
CAS
Google Scholar
Cai G, Jiang M, Zhang B, Zhou Y, Zhang L, Lei J, Gu X, Cao G, Jin J, Zhang R. Preparation and biological evaluation of a glycosylated fusion interferon directed to hepatic receptors. Biol Pharm Bull. 2009;32:440–3.
Article
CAS
Google Scholar
Rosendahl MS, Doherty DH, Smith DJ, Carlson SJ, Chlipala EA, Cox GN. A long-acting, highly potent interferon α2 conjugate created using site-specific PEGylation. Bioconj Chem. 2005;16:200–7.
Article
CAS
Google Scholar
Reddy KR, Modi MW, Pedder S. Use of peginterferon α-2a (40 KD) (pegasys (R)) for the treatment of hepatitis C. Adv Drug Deliv Rev. 2002;54:571–86.
Article
Google Scholar
Higel F, Seidl A, Sorgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.
Article
CAS
Google Scholar
Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24:210–5.
Article
CAS
Google Scholar
Liu LM. Antibody glycosylation and Its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015;104:1866–84.
Article
CAS
Google Scholar
Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J, Battersby JE. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology. 2007;17:529–40.
Article
CAS
Google Scholar
Keck R, Nayak N, Lerner L, Raju S, Ma S, Schreitmueller T, Chamow S, Moorhouse K, Kotts C, Jones A. Characterization of a complex glycoprotein whose variable metabolic clearance in humans is dependent on terminal N-acetylglucosamine content. Biologicals. 2008;36:49–60.
Article
CAS
Google Scholar
Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrod B, Sorensen KK. Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. Hepatology. 2008;48:2007–15.
Article
CAS
Google Scholar
Swain SD, Lee SJ, Nussenzweig MC, Harmsen AG. Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect Immun. 2003;71:6213–21.
Article
CAS
Google Scholar