Madhavan A, Arun KB, Sindhu R, Binod P, Kim SH, Pandey A. Tailoring of microbes for the production of high value plant-derived compounds: from pathway engineering to fermentative production. Biochim Biophys Acta Proteins Proteom. 2019;1867:140262.
Article
CAS
PubMed
Google Scholar
Huertas MJ, Michán C. Paving the way for the production of secretory proteins by yeast cell factories. Microb Biotechnol. 2019;12:1095–6. https://doi.org/10.1111/1751-7915.13342.
Article
PubMed
PubMed Central
Google Scholar
Martínez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol. 2012;23:965–71.
Article
PubMed
CAS
Google Scholar
Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Babu AK, et al. Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett. 2018. https://doi.org/10.1093/femsle/fny222.
Article
PubMed
Google Scholar
Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. 1996;274:546–67. https://doi.org/10.1126/science.274.5287.546.
Article
CAS
PubMed
Google Scholar
Thak EJ, Yoo SJ, Moon HY, Kang HA. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins. FEMS Yeast Res. 2020. https://doi.org/10.1093/femsyr/foaa009.
Article
PubMed
Google Scholar
Kavšček M, Stražar M, Curk T, Natter K, Petrovič U. Yeast as a cell factory: current state and perspectives. Microb Cell Fact. 2015. https://doi.org/10.1186/s12934-015-0281-x.
Article
PubMed
PubMed Central
Google Scholar
Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem. 2018;65:306–22.
Article
CAS
PubMed
Google Scholar
Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32:54–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieira Gomes A, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin N. Comparison of yeasts as hosts for recombinant protein production. Microorganisms. 2018;6:38.
Article
PubMed Central
CAS
Google Scholar
Partow S, Siewers V, Bjørn S, Nielsen J, Maury J. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast. 2010;27:955–64.
Article
CAS
PubMed
Google Scholar
Liu B, Gong X, Chang S, Yang Y, Song M, Duan D, et al. Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol. 2009;143:95–102.
Article
CAS
PubMed
Google Scholar
Kotopka BJ, Smolke CD. Model-driven generation of artificial yeast promoters. Nat Commun. 2020;11:2113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portela RMC, Vogl T, Kniely C, Fischer JE, Oliveira R, Glieder A. Synthetic core promoters as universal parts for fine-tuning expression in different yeast species. ACS Synth Biol. 2017;6:471–84. https://doi.org/10.1021/acssynbio.6b00178.
Article
CAS
PubMed
Google Scholar
Decoene T, De Maeseneire SL, De Mey M. Modulating transcription through development of semi-synthetic yeast core promoters. PLoS One. 2019;14:e0224476. https://doi.org/10.1371/journal.pone.0224476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Liu L, Li X, Liu D, Yuan Y. Engineering yeast artificial core promoter with designated base motifs. Microb Cell Fact. 2020;19:38. https://doi.org/10.1186/s12934-020-01305-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D. Recombinant protein production in yeasts. Mol Biotechnol. 2012;824:329–58. https://doi.org/10.1007/978-1-61779-433-9_17.
Article
CAS
Google Scholar
Blount BA, Weenink T, Vasylechko S, Ellis T. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One. 2012;7:e33279. https://doi.org/10.1371/journal.pone.0033279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol. 2013;30:385–404.
Article
CAS
PubMed
Google Scholar
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, et al. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res. 2008;36:e76. https://doi.org/10.1093/nar/gkn369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruth C, Zuellig T, Mellitzer A, Weis R, Looser V, Kovar K, et al. Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris. Syst Synth Biol. 2010;4:181–91. https://doi.org/10.1007/s11693-010-9057-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J. GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol. 2011;77:3600–8. https://doi.org/10.1128/AEM.02843-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellitzer A, Weis R, Glieder A, Flicker K. Expression of lignocellulolytic enzymes in Pichia pastoris. Microb Cell Fact. 2012;11:61. https://doi.org/10.1186/1475-2859-11-61.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, et al. Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics. 2010;11:1. https://doi.org/10.1186/1471-2164-11-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bredell H, Smith JJ, Görgens JF, van Zyl WH. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1–L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast. 2018;35:519–29. https://doi.org/10.1002/yea.3318.
Article
CAS
PubMed
Google Scholar
Talebkhan Y, Samadi T, Samie A, Barkhordari F, Azizi M, Khalaj V, et al. Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol. 2016;8:21–8.
PubMed
PubMed Central
Google Scholar
Stockmann C, Scheidle M, Klee D, Dittrich B, Merckelbach A, Hehmann G, et al. Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact. 2009;8:22. https://doi.org/10.1186/1475-2859-8-22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gellissen G, Kunze G, Gaillardin C, Cregg J, Berardi E, Veenhuis M, et al. New yeast expression platforms based on methylotrophic and and on dimorphic and—a comparison. FEMS Yeast Res. 2005;5:1079–96. https://doi.org/10.1016/j.femsyr.2005.06.004.
Article
CAS
PubMed
Google Scholar
Saraya R, Krikken AM, Kiel JAKW, Baerends RJS, Veenhuis M, Klei IJ. Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res. 2012;12:271–8. https://doi.org/10.1111/j.1567-1364.2011.00772.x.
Article
CAS
PubMed
Google Scholar
Müller S, Sandal T, Kamp-Hansen P, Dalbøge H. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe andYarrowia lipolytica. Cloning of two novel promoters fromYarrowia lipolytica. Yeast. 1998;14:1267–83.
Article
PubMed
Google Scholar
Juretzek T, Wang H-J, Nicaud J-M, Mauersberger S, Barth G. Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol Bioprocess Eng. 2000;5:320–6. https://doi.org/10.1007/BF02942206.
Article
CAS
Google Scholar
Kamineni A, Chen S, Chifamba G, Tsakraklides V. Promoters for lipogenesis-specific downregulation in Yarrowia lipolytica. FEMS Yeast Res. 2020. https://doi.org/10.1093/femsyr/foaa035/5857169.
Article
PubMed
PubMed Central
Google Scholar
Trassaert M, Vandermies M, Carly F, Denies O, Thomas S, Fickers P, et al. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microb Cell Fact. 2017;16:141. https://doi.org/10.1186/s12934-017-0755-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa JCC, Colombo LT, Alvim MCT, Avonce N, Van Dijck P, Passos FML. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microb Cell Fact. 2013;12:59. https://doi.org/10.1186/1475-2859-12-59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocha SN, Abrahao-Neto J, Cerdan ME, Gonzalez-Siso MI, Gombert AK. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Fact. 2010;9:4. https://doi.org/10.1186/1475-2859-9-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flores C-L, Rodríguez C, Petit T, Gancedo C. Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev. 2000;24:507–29. https://doi.org/10.1111/j.1574-6976.2000.tb00553.x.
Article
CAS
PubMed
Google Scholar
Anders A, Lilie H, Franke K, Kapp L, Stelling J, Gilles ED, et al. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J Biol Chem. 2006;281:29337–48.
Article
CAS
PubMed
Google Scholar
Tokunaga M, Ishibashi M, Tatsuda D, Tokunaga H. Secretion of mouse α-amylase from Kluyveromyces lactis. Yeast. 1997;13:699–706.
Article
CAS
PubMed
Google Scholar
Madhavan A, Sukumaran RK. Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. Bioresour Technol. 2014;165:302–8.
Article
CAS
PubMed
Google Scholar
Madhavan A, Sukumaran RK. Secreted expression of an active human interferon-beta (HuIFNβ) in Kluyveromyces lactis. Eng Life Sci. 2016;16:379–85. https://doi.org/10.1002/elsc.201500120.
Article
CAS
Google Scholar
Madhavan A, Sukumaran RK. Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem Eng J. 2015;102:31–7.
Article
CAS
Google Scholar
Madhavan A, Pandey A, Sukumaran RK. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresour Technol. 2017;245:1334–42.
Article
CAS
PubMed
Google Scholar
Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.
Article
CAS
PubMed
Google Scholar
Yang Y, Liu G, Chen X, Liu M, Zhan C, Liu X, et al. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme Microb Technol. 2020;138:109556.
Article
CAS
PubMed
Google Scholar
Wang L, Deng A, Zhang Y, Liu S, Liang Y, Bai H, et al. Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts. Biotechnol Biofuels. 2018;11:277. https://doi.org/10.1186/s13068-018-1271-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I. Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol. 2017;6:402–9. https://doi.org/10.1021/acssynbio.6b00285.
Article
CAS
PubMed
Google Scholar
Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM, et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1:88–96.
Article
CAS
PubMed
Google Scholar
Numamoto M, Maekawa H, Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA–sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng. 2017;124:487–92.
Article
CAS
PubMed
Google Scholar
Reider Apel A, D’Espaux L, Wehrs M, Sachs D, Li RA, Tong GJ, et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 2017;45:496–508. https://doi.org/10.1093/nar/gkw1023.
Article
CAS
PubMed
Google Scholar
Vanegas KG, Lehka BJ, Mortensen UH. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16:25. https://doi.org/10.1186/s12934-017-0632-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagassé HAD, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, et al. Recent advances in (therapeutic protein) drug development. F1000 Res. 2017;6:113.
Article
CAS
Google Scholar
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized delivery systems for therapeutic proteins: clinically validated technologies and advanced development strategies. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00089.
Article
PubMed
PubMed Central
Google Scholar
Johnson I. Human insulin from recombinant DNA technology. Science. 1983;219:632–7.
Article
CAS
PubMed
Google Scholar
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014. https://doi.org/10.3389/fmicb.2014.00172.
Article
PubMed
PubMed Central
Google Scholar
Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72:211–22.
Article
CAS
PubMed
Google Scholar
Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature. 1982;298:347–50.
Article
CAS
PubMed
Google Scholar
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27:297–306.
Article
CAS
PubMed
Google Scholar
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2014. https://doi.org/10.1111/1567-1364.12195.
Article
Google Scholar
Jewett MC, Hofmann G, Nielsen J. Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol. 2006;17:191–7.
Article
CAS
PubMed
Google Scholar
Ibáñez C, Pérez-Torrado R, Morard M, Toft C, Barrio E, Querol A. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. Int J Food Microbiol. 2017;257:262–70.
Article
PubMed
CAS
Google Scholar
Paulo JA, O’Connell JD, Gaun A, Gygi SP. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell. 2015;26:4063–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kjeldsen T, Hach M, Balschmidt P, Havelund S, Pettersson AF, Markussen J. Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expr Purif. 1998;14:309–16.
Article
CAS
PubMed
Google Scholar
Payne T, Finnis C, Evans LR, Mead DJ, Avery SV, Archer DB, et al. Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins. Appl Environ Microbiol. 2008;74:7759–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang M, Wang G, Qin J, Petranovic D, Nielsen J. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci USA. 2018;115:E11025–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol. 2005;71:4359–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun C-R, Kong J-N, Chung J-H, Kim M-C, Kong K-H. Improved secretory production of the sweet-tasting protein, brazzein, in Kluyveromyces lactis. J Agric Food Chem. 2016;64:6312–6.
Article
CAS
PubMed
Google Scholar
Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in Yeasts. Appl Environ Microbiol. 2007;73:6499–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, H-l Zhao, Xue C, X-h Xiong, X-q Yao, Li X-y, et al. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol Prog. 2006;22:1090–5.
Article
CAS
PubMed
Google Scholar
Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV. Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res. 2006;23:790–7.
Article
CAS
PubMed
Google Scholar
de Ruijter JC, Koskela EV, Frey AD. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Fact. 2016;15:87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qi Q, Li F, Yu R, Engqvist MKM, Siewers V, Fuchs J, et al. Different routes of protein folding contribute to improved protein production in Saccharomyces cerevisiae. MBio. 2020. https://doi.org/10.1128/mBio.02743-20.
Article
PubMed
PubMed Central
Google Scholar
Hou J, Österlund T, Liu Z, Petranovic D, Nielsen J. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2013;97:3559–68.
Article
CAS
PubMed
Google Scholar
Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng. 2012;14:120–7.
Article
CAS
PubMed
Google Scholar
Bao J, Huang M, Petranovic D, Nielsen J. Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Expr. 2018;8:37.
Article
CAS
Google Scholar
Bao J, Huang M, Petranovic D, Nielsen J. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae. Appl Environ Microbiol. 2017. https://doi.org/10.1128/AEM.03400-16.
Article
PubMed
PubMed Central
Google Scholar
Cho EY, Cheon SA, Kim H, Choo J, Lee D-J, Ryu HM, et al. Multiple-yapsin-deficient mutant strains for high-level production of intact recombinant proteins in Saccharomyces cerevisiae. J Biotechnol. 2010;149:1–7.
Article
CAS
PubMed
Google Scholar
Tomimoto K, Fujita Y, Iwaki T, Chiba Y, Jigami Y, Nakayama K, et al. Protease-deficient saccharomyces cerevisiae strains for the synthesis of human-compatible glycoproteins. Biosci Biotechnol Biochem. 2013;77:2461–6.
Article
CAS
PubMed
Google Scholar
Wu M, Shen Q, Yang Y, Zhang S, Qu W, Chen J, et al. Disruption of YPS1 and PEP4 genes reduces proteolytic degradation of secreted HSA/PTH in Pichia pastoris GS115. J Ind Microbiol Biotechnol. 2013;40:589–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, et al. Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol. 2010;85:667–77.
Article
CAS
PubMed
Google Scholar
Finnis CJ, Payne T, Hay J, Dodsworth N, Wilkinson D, Morton P, et al. High-level production of animal-free recombinant transferrin from Saccharomyces cerevisiae. Microb Cell Fact. 2010;9:87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94:1626–35.
Article
CAS
PubMed
Google Scholar
Fidan O, Zhan J. Recent advances in engineering yeast for pharmaceutical protein production. RSC Adv. 2015;5:86665–74.
Article
CAS
Google Scholar
Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43R-56R.
Article
CAS
PubMed
Google Scholar
De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010;87:1617–31.
Article
PubMed
CAS
Google Scholar
Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H, Takeuchi M, et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem. 1998;273:26298–304.
Article
CAS
PubMed
Google Scholar
Cheon SA, Kim H, Oh D-B, Kwon O, Kang HA. Remodeling of the glycosylation pathway in the methylotrophic yeast Hansenula polymorpha to produce human hybrid-type N-glycans. J Microbiol. 2012;50:341–8.
Article
CAS
PubMed
Google Scholar
Ohashi T, Takegawa K. N- and O-linked oligosaccharides completely lack galactose residues in the gms1och1 mutant of Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 2010;86:263–72.
Article
CAS
PubMed
Google Scholar
Song Y, Choi MH, Park J-N, Kim MW, Kim EJ, Kang HA, et al. Engineering of the yeast yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl Environ Microbiol. 2007;73:4446–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol. 2007;18:387–92.
Article
CAS
PubMed
Google Scholar
Choi B-K, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA. 2003;100:5022–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson RC. Functional analysis of the ALG3 gene encoding the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology. 2004;14:399–407.
Article
CAS
PubMed
Google Scholar
Parsaie Nasab F, Aebi M, Bernhard G, Frey AD. A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl Environ Microbiol. 2013;79:997–1007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313:1441–3.
Article
CAS
PubMed
Google Scholar
Hanisch F-G. O-glycosylation of the mucin type. Biol Chem. 2001. https://doi.org/10.1515/BC.2001.022.
Article
PubMed
Google Scholar
Lommel M, Strahl S. Protein O-mannosylation: conserved from bacteria to humans. Glycobiology. 2009;19:816–28.
Article
CAS
PubMed
Google Scholar
Wilson IBH. The never-ending story of peptide O-xylosyltransferase. Cell Mol Life Sci. 2004;61:794–809.
Article
CAS
PubMed
Google Scholar
Hamilton SR, Cook WJ, Gomathinayagam S, Burnina I, Bukowski J, Hopkins D, et al. Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology. 2013;23:1192–203.
Article
CAS
PubMed
Google Scholar
Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, et al. Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci USA. 2008;105:3232–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chigira Y, Oka T, Okajima T, Jigami Y. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology. 2008;18:303–14.
Article
CAS
PubMed
Google Scholar
Dean N. Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta Gen Subj. 1999;1426:309–22.
Article
CAS
Google Scholar
Han Y, Kanbe T, Cherniak R, Cutler JE. Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun. 1997;65:4100–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21:949–59.
Article
CAS
PubMed
Google Scholar
Alessandri L, Ouellette D, Acquah A, Rieser M, LeBlond D, Saltarelli M, et al. Increased serum clearance of oligomannose species present on a human IgG1 molecule. MAbs. 2012;4:509–20.
Article
PubMed
PubMed Central
Google Scholar
Liu L, Gomathinayagam S, Hamuro L, Prueksaritanont T, Wang W, Stadheim TA, et al. The impact of glycosylation on the pharmacokinetics of a TNFR2: Fc fusion protein expressed in glycoengineered Pichia Pastoris. Pharm Res. 2013;30:803–12.
Article
CAS
PubMed
Google Scholar
De Wachter C, Van Landuyt L, Callewaert N. Engineering of yeast glycoprotein expression. In: Advances in biochemical engineering/biotechnology. 2018. https://doi.org/10.1007/10_2018_69.
De Pourcq K, Tiels P, Van Hecke A, Geysens S, Vervecken W, Callewaert N. Engineering yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One. 2012;7:e39976.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24:45–66.
Article
CAS
PubMed
Google Scholar
Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98:5301–17. https://doi.org/10.1007/s00253-014-5732-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heyland J, Fu J, Blank LM, Schmid A. Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng. 2011;108:1942–53.
Article
CAS
PubMed
Google Scholar
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact. 2008;7:11. https://doi.org/10.1186/1475-2859-7-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, et al. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv. 2015;33:1177–93.
Article
CAS
PubMed
Google Scholar
Rahimi A, Hosseini SN, Javidanbardan A, Khatami M. Continuous fermentation of recombinant Pichia pastoris Mut+ producing HBsAg: optimizing dilution rate and determining strain-specific parameters. Food Bioprod Process. 2019;118:248–57.
Article
CAS
Google Scholar
Schenk J, Balazs K, Jungo C, Urfer J, Wegmann C, Zocchi A, et al. Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain. Biotechnol Bioeng. 2008;99:368–77.
Article
CAS
PubMed
Google Scholar
Barrigon JM, Valero F, Montesinos JL. A macrokinetic model-based comparative meta-analysis of recombinant protein production by Pichia pastoris under AOX1 promoter. Biotechnol Bioeng. 2015;112:1132–45.
Article
CAS
PubMed
Google Scholar
Potgieter TI, Kersey SD, Mallem MR, Nylen AC, D’Anjou M. Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng. 2010;106:918–27.
Article
CAS
PubMed
Google Scholar
Hang H, Chen W, Guo M, Chu J, Zhuang Y, Zhang S. A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris. Korean J Chem Eng. 2008;25:1065–9. https://doi.org/10.1007/s11814-008-0174-3.
Article
CAS
Google Scholar
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, et al. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv. 2015;33:1177–93.
Article
CAS
PubMed
Google Scholar
Weinhandl K, Winkler M, Glieder A, Camattari A. A novel multi-enzymatic high throughput assay for transaminase activity. Tetrahedron. 2012;68:7586–90.
Article
CAS
Google Scholar
Inan M, Meagher MM. Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J Biosci Bioeng. 2001;92:585–9.
Article
CAS
PubMed
Google Scholar
Dietzsch C, Spadiut O, Herwig C. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb Cell Fact. 2011;10:85. https://doi.org/10.1186/1475-2859-10-85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushell ME, Rowe M, Avignone-Rossa CA, Wardell JN. Cyclic fed-batch culture for production of human serum albumin in Pichia pastoris. Biotechnol Bioeng. 2003;82:678–83. https://doi.org/10.1002/bit.10616.
Article
CAS
PubMed
Google Scholar
Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, et al. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact. 2010;9:31. https://doi.org/10.1186/1475-2859-9-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandermies M, Fickers P. Bioreactor-scale strategies for the production of recombinant protein in the yeast Yarrowia lipolytica. Microorganisms. 2019;7:40.
Article
CAS
PubMed Central
Google Scholar
Chang CC, Ryu DDY, Park CS, Kim J-Y. Enhancement of rice α-amylase production in recombinant Yarrowia lipolytica. J Ferment Bioeng. 1997;84:421–7.
Article
CAS
Google Scholar
Chang CC, Ryu DDY, Park CS, Kim J-Y, Ogrydziak DM. Recombinant bioprocess optimization for heterologous protein production using two-stage, cyclic fed-batch culture. Appl Microbiol Biotechnol. 1998;49:531–7.
Article
CAS
PubMed
Google Scholar
Huang Y-C, Chen Y-F, Chen C-Y, Chen W-L, Ciou Y-P, Liu W-H, et al. Production of ferulic acid from lignocellulolytic agricultural biomass by Thermobifida fusca thermostable esterase produced in Yarrowia lipolytica transformant. Bioresour Technol. 2011;102:8117–22.
Article
CAS
PubMed
Google Scholar
Liu S, Wan D, Wang M, Madzak C, Du G, Chen J. Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization. BMC Biotechnol. 2015;15:75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Emond S, Montanier C, Nicaud J-M, Marty A, Monsan P, Andre I, et al. New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol. 2010;76:2684–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasmi N, Ayed A, Ammar B, Zrigui R, Nicaud J-M, Kallel H. Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast Yarrowia lipolytica. Microb Cell Fact. 2011;10:90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theron CW, Berrios J, Delvigne F, Fickers P. Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol. 2018;102:63–80.
Article
CAS
PubMed
Google Scholar
Huang Y-Y, Jian X-X, Lv Y-B, Nian K-Q, Gao Q, Chen J, et al. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. J Biotechnol. 2018;281:106–14.
Article
CAS
PubMed
Google Scholar
Wei S, Jian X, Chen J, Zhang C, Hua Q. Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresour Bioprocess. 2017;4:51.
Article
Google Scholar
Gasmi N, Lassoued R, Ayed A, Tréton B, Chevret D, Nicaud JM, et al. Production and characterization of human granulocyte–macrophage colony-stimulating factor (hGM-CSF) expressed in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol. 2012;96:89–101.
Article
CAS
PubMed
Google Scholar
Gasmi N, Ayed A, Nicaud J-M, Kallel H. Design of an efficient medium for heterologous protein production in Yarrowia lipolytica: case of human interferon alpha 2b. Microb Cell Fact. 2011;10:38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiels P, Baranova E, Piens K, De Visscher C, Pynaert G, Nerinckx W, et al. A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol. 2012;30:1225–31.
Article
CAS
PubMed
Google Scholar
Ercan D, Demirci A. Enhanced human lysozyme production in biofilm reactor by Kluyveromyces lactis K7. Biochem Eng J. 2014;92:2–8.
Article
CAS
Google Scholar
Moussa M, Ibrahim M, El Ghazaly M, Rohde J, Gnoth S, Anton A, et al. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha. BMC Biotechnol. 2012;12:96. https://doi.org/10.1186/1472-6750-12-96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud J-M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng. 2016;38:38–46.
Article
CAS
PubMed
Google Scholar
Jacobsen IH, Ledesma-Amaro R, Martinez JL. Recombinant β-carotene production by Yarrowia lipolytica—assessing the potential of micro-scale fermentation analysis in cell factory design and bioreaction optimization. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00029/full.
Article
PubMed
PubMed Central
Google Scholar
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–52. https://doi.org/10.1016/s0065-2164(02)51000-5.
Article
CAS
PubMed
Google Scholar
Sáez-Sáez J, Wang G, Marella ER, Sudarsan S, Cernuda Pastor M, Borodina I. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab Eng. 2020;62:51–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tuite MF, Dobson MJ, Roberts NA, King RM, Burke DC, Kingsman SM, et al. Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO J. 1982;1:603–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katla S, Mohan N, Pavan SS, Pal U, Sivaprakasam S. Control of specific growth rate for the enhanced production of human interferon α2b in glycoengineered Pichia pastoris—process analytical technology guided approach. J Chem Technol Biotechnol. 2019;94:3111–23. https://doi.org/10.1002/jctb.6118.
Article
CAS
Google Scholar
Gurramkonda C, Adnan A, Gäbel T, Lünsdorf H, Ross A, Nemani S, et al. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microb Cell Fact. 2009;8:13. https://doi.org/10.1186/1475-2859-8-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Wu X, Cao L, Zhong Z, Zhou Y. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats. Microb Biotechnol. 2016;9:846–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran A-M, Nguyen T-T, Nguyen C-T, Huynh-Thi X-M, Nguyen C-T, Trinh M-T, et al. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte–macrophage colony-stimulating factor. BMC Res Notes. 2017;10:148. https://doi.org/10.1186/s13104-017-2471-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, et al. High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expr Purif. 2018;147:61–8.
Article
CAS
PubMed
Google Scholar
Xu X, Ren S, Chen X, Ge J, Xu Z, Huang H, et al. Generation of hepatitis B virus PreS2-S antigen in Hansenula polymorpha. Virol Sin. 2014;29:403–9. https://doi.org/10.1007/s12250-014-3508-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bredell H, Smith JJ, Prins WA, Görgens JF, van Zyl WH. Expression of rotavirus VP6 protein: a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Res. 2016;16:1. https://doi.org/10.1093/femsyr/fow001.
Article
CAS
Google Scholar
Hou J, Tyo KEJ, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res. 2012;12:491–510.
Article
CAS
PubMed
Google Scholar
Smith JD, Tang BC, Robinson AS. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng. 2004;85:340–50.
Article
CAS
PubMed
Google Scholar
Valkonen M, Penttilä M, Saloheimo M. Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69:2065–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Pioli D, Piper PW. Overexpression of the gene for polyubiquitin in yeast confers increased secretion of a human leucocyte protease inhibitor. Nat Biotechnol. 1994;12:819–23.
Article
CAS
Google Scholar
Jonson L, Rehfeld JF, Johnsen AH. Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. Eur J Biochem. 2004;271:4788–97.
Article
CAS
PubMed
Google Scholar
Zhang B, Chang A, Kjeldsen TB, Arvan P. Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol. 2001;153:1187–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong E, Davidson AR, Kaiser CA. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol. 1996;135:623–33.
Article
CAS
PubMed
Google Scholar
Holkeri H, Makarow M. Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett. 1998;429:162–6.
Article
CAS
PubMed
Google Scholar
Kanjou N, Nagao A, Ohmiya Y, Ohgiya S. Yeast mutant with efficient secretion identified by a novel secretory reporter, Cluc. Biochem Biophys Res Commun. 2007;358:429–34.
Article
CAS
PubMed
Google Scholar
Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S. Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast. 1997;13:337–51.
Article
CAS
PubMed
Google Scholar
Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem. 1993;268:26338–45.
Article
CAS
PubMed
Google Scholar
Idiris A, Tohda H, Bi K, Isoai A, Kumagai H, Giga-Hama Y. Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 2006;73:404–20.
Article
CAS
PubMed
Google Scholar
Ikeda Y, Ohashi T, Tanaka N, Takegawa K. Identification and characterization of a gene required for α1, 2-mannose extension in the O -linked glycan synthesis pathway in Schizosaccharomyces pombe. FEMS Yeast Res. 2009;9:115–25.
Article
CAS
PubMed
Google Scholar
Werten MWT, de Wolf FA. Reduced proteolysis of secreted gelatin and Yps1-mediated alpha-factor leader processing in a Pichia pastoris kex2 disruptant. Appl Environ Microbiol. 2005;71:2310–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao W-G, Fukuhara H. Secretion of human proteins from yeast: stimulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene. 2001;272:103–10.
Article
CAS
PubMed
Google Scholar
Klabunde J, Kleebank S, Piontek M, Hollenberg CP, Hellwig S, Degelmann A. Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha. FEMS Yeast Res. 2007;7:1168–80.
Article
CAS
PubMed
Google Scholar