Wieërs G, Belkhir L, Enaud R, et al. How probiotics affect the microbiota. Front Cell Infect Microbiol. 2019;9:454.
Article
PubMed
CAS
Google Scholar
Ogunrinola GA, Oyewale JO, Oshamika OO, Olasehinde GI. The human microbiome and its impacts on health. Int J Microbiol. 2020;2020:1–7.
Article
CAS
Google Scholar
Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4:623–32.
Article
CAS
PubMed
Google Scholar
Lai CY, Sung J, Cheng F, et al. Systematic review with meta-analysis: review of donor features, procedures and outcomes in 168 clinical studies of faecal microbiota transplantation. Aliment Pharmacol Ther. 2019;49:354–63.
Article
PubMed
Google Scholar
Ding WK, Shah NP. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci. 2007;72:M446-450.
Article
CAS
PubMed
Google Scholar
Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens. 2009;1:19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su MS, Schlicht S, Gänzle MG. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Fact. 2011;10:S8.
Article
PubMed
PubMed Central
Google Scholar
Ilhan ZE, Marcus AK, Kang D-W, Rittmann BE, Krajmalnik-Brown R. pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere. 2017;2:e00047-e00117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A review of the advancements in probiotic delivery: conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech. 2014;15:29–43.
Article
CAS
PubMed
Google Scholar
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019;11:1591.
Article
CAS
PubMed Central
Google Scholar
Ulleberg EK, Comi I, Holm H, Herud EB, Jacobsen M, Vegarud GE. Human gastrointestinal juices intended for use in in vitro digestion models. Food Digest. 2011;2:52–61.
Article
CAS
Google Scholar
Ziarno M, Zaręba D. Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions. Microb Ecol Health Dis. 2015. https://doi.org/10.3402/mehd.v26.27812.
Article
PubMed
PubMed Central
Google Scholar
Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods. 2004;56:27–35.
Article
CAS
PubMed
Google Scholar
Krasaekoopt W, Bhandari B, Deeth H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J. 2004;14:737–43.
Article
CAS
Google Scholar
Khosravi Zanjani MA, Ghiassi Tarzi B, Sharifan A, Mohammadi N. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran J Pharm Res. 2014;13:843–52.
PubMed
PubMed Central
Google Scholar
Zhu H. Bacterial killing in gastric juice—effect of pH and pepsin on Escherichia coli and Helicobacter pylori. J Med Microbiol. 2006;55:1265–70.
Article
CAS
PubMed
Google Scholar
Salmons B, Brandtner EM, Hettrich K, et al. Encapsulated cells to focus the metabolic activation of anticancer drugs. Curr Opin Mol Ther. 2010;12:450–60.
CAS
PubMed
Google Scholar
Rokka S, Rantamäki P. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol. 2010;231:1–12.
Article
CAS
Google Scholar
Li W, Liu L, Tian H, Luo X, Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr Polym. 2019;223:115065.
Article
CAS
PubMed
Google Scholar
Chen B, Lin X, Lin X, Li W, Zheng B, He Z. Pectin-microfibrillated cellulose microgel: effects on survival of lactic acid bacteria in a simulated gastrointestinal tract. Int J Biol Macromol. 2020;158:826–36.
Article
CAS
PubMed
Google Scholar
Singh P, Medronho B, Alves L, da Silva GJ, Miguel MG, Lindman B. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria. Carbohydr Polym. 2017;175:87–95.
Article
CAS
PubMed
Google Scholar
Fijałkowski K, Peitler D, Rakoczy R, Żywicka A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT - Food Science and Technology. 2016;68:322–8.
Article
CAS
Google Scholar
Kwiecień I, Kwiecień M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels. 2018;4:47.
Article
PubMed Central
CAS
Google Scholar
Cronin M, Stanton RM, Francis KP, Tangney M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther. 2012;19:731–40.
Article
CAS
PubMed
Google Scholar
Both E, Gyorgy E, Kibedi-Szabo CZ, et al. Acid and bile tolerance, adhesion to epithelial cells of probiotic microorganisms. UPB Bull Sci Ser B Chem Mater Sci. 2010;72:37–44.
Google Scholar
Foucault M-L, Thomas L, Goussard S, Branchini BR, Grillot-Courvalin C. In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. Appl Environ Microbiol. 2010;76:264–74.
Article
CAS
PubMed
Google Scholar
Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU. Bacterial luciferase reporters: the Swiss army knife of molecular biology. Bioeng Bugs. 2011;2:8–16.
Article
PubMed
Google Scholar
Baban CK, Cronin M, Akin AR, et al. Bioluminescent bacterial imaging in vivo. J Vis Exp. 2012;69:e4318.
Google Scholar
Cronin M, Akin AR, Collins SA, et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS ONE. 2012;7:e30940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winiarczyk S, Gradski Z, Kosztolich B, et al. A clinical protocol for treatment of canine mammary tumors using encapsulated, cytochrome P450 synthesizing cells activating cyclophosphamide: a phase I/II study. J Mol Med. 2002;80:610–4.
Article
CAS
PubMed
Google Scholar
Salmons B, Hauser O, Gunzburg WH, Tabotta W. GMP production of an encapsulated cell therapy product: issues and considerations. Bioprocess J. 2007;4:36–43.
Google Scholar
Mojaverian P, Ferguson RK, Vlasses PH, et al. Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition. Gastroenterology. 1985;89:392–7.
Article
CAS
PubMed
Google Scholar
Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Tech. 2006;3:47–53.
Google Scholar
Hong HA, Khaneja R, Tam NMK, et al. Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol. 2009;160:134–43.
Article
CAS
PubMed
Google Scholar
Schwarz R, Kaspar A, Seelig J, Künnecke B. Gastrointestinal transit times in mice and humans measured with 27Al and 19F nuclear magnetic resonance. Magn Reson Med. 2002;48:255–61.
Article
PubMed
Google Scholar
Padmanabhan P, Grosse J, Asad ABMA, Radda GK, Golay X. Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI research. 2013;3:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA. Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr. 2018;58:1864–77.
Article
CAS
PubMed
Google Scholar
Gbassi G, Vandamme T, Ennahar S, Marchioni E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int J Food Microbiol. 2009;129:103–5.
Article
CAS
PubMed
Google Scholar
Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromol. 2011;12:2834–40.
Article
CAS
Google Scholar
Ding WK, Shah NP. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J Food Sci. 2009;74:M53–61.
Article
CAS
PubMed
Google Scholar
Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv Mater. 2016;28:9486–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Vuyst L, Avonts L, Makras L. Probiotics, prebiotics and gut health. In: Remacle C, Reusens B, editors. Functional foods, ageing and degenerative disease. Swaston: Woodhead Publishing; 2004. p. 416–82.
Chapter
Google Scholar
Shortt C. The probiotic century: historical and current perspectives. Trends Food Sci Technol. 1999;10:411–7.
Article
CAS
Google Scholar
Salmons B, Dangerfield D, Gunzburg W. Delivery of probiotics efficiently to the intestine: the acid test. NuFFooDS Spectrum Asia. 2020. https://www.nuffoodsspectrum.asia/analysis/54/1525/delivery-of.
Salmons B, Gunzburg WH. Release characteristics of cellulose sulphate capsules and production of cytokines from encapsulated cells. Int J Pharm. 2018;548:15–22.
Article
CAS
PubMed
Google Scholar
Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157: H7 growth in the streptomycin-treated mouse intestine. Infect Immun. 2009;77:2876–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Escribano-Vazquez U, Verstraeten S, Martin R, et al. The commensal Escherichia coli CEC15 reinforces intestinal defences in gnotobiotic mice and is protective in a chronic colitis mouse model. Sci Rep. 2019;9:11431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Escribano-Vazquez U, Beimfohr C, Bellet D, et al. Symbioflor2® Escherichia coli genotypes enhance ileal and colonic gene expression associated with mucosal defense in gnotobiotic mice. Microorganisms. 2020;8:512.
Article
CAS
PubMed Central
Google Scholar
Slavin JL, Brauer PM, Marlett JA. Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. The Journal of Nutrition. 1981;111:287–97.
Article
CAS
PubMed
Google Scholar
Wedekind KJ, Mansfield HR, Montgomery L. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Appl Environ Microbiol. 1988;54:1530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chassard C, Delmas E, Robert C, Bernalier-Donadille A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens: Cellulolytic microbiota and CH4 production in the human gut. FEMS Microbiol Ecol. 2010;74:205–13.
Article
CAS
PubMed
Google Scholar
Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol. 2003;46:81–9.
Article
CAS
PubMed
Google Scholar
Betian HG, Linehan BA, Bryant MP, Holdeman LV. Isolation of a cellulotytic Bacteroides sp. from human feces. Appl Environ Microbiol. 1977;33:1009–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Culligan E, Sleator R. Advances in the microbiome: applications to Clostridium difficile infection. J Clin Med. 2016;5:83.
Article
PubMed Central
CAS
Google Scholar