Van Dijl JM, Hecker M. Bacillus subtilis: from soil bacterium to super secreting cell factory. Microb Cell Fact. 2013;12:3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarvas M, Harwood CR, Bron S, Van Dijl JM. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta. 2004;1694:311–27.
CAS
PubMed
Google Scholar
Hyyrylainen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K. D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem. 2000;275:26696–703.
CAS
PubMed
Google Scholar
Chambert R, Benyahia F, Petit-Glatron MF. Secretion of Bacillus subtilis levansucrase Fe(III) could act as a cofactor in an efficient coupling of the folding and translocation processes. Biochem J. 1990;265:375–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta. 2004;1694:299–310.
Article
CAS
PubMed
Google Scholar
Raul D, Biswas T, Mukhopadhyay S, Das SK, Gupta S. Production and partial purification of alpha amylase from Bacillus subtilis (MTCC 121) using solid state fermentation. Biochem Res Int. 2014;2014:568141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jensen CL, Stephenson K, Jorgensen ST, Harwood C. Cell-associated degradation affects the yield of secreted engineered and heterologous proteins in the Bacillus subtilis expression system. Microbiology. 2000;146:2583–94.
Article
CAS
PubMed
Google Scholar
Tjalsma H, Antelmann H, Jongbloed JDH, Braun PG, Darmon E, Dorenbos R, Dubois JYF, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, Van Dijl JM. Proteomics of protein secretion by Bacillus subtilis: separating the ‘secrets’ of the secretome. Microbiol Mol Biol Rev. 2004;68:207–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ataide SF, Schmitz N, Shen K, Ke A, Shan S, Doudna JA, Ban N. The crystal structure of the signal recognition particle in complex with its receptor. Science. 2011;331:881–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura K, Yahagi S, Yamazaki T, Yamane K. Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem. 1999;274:13569–76.
Article
CAS
PubMed
Google Scholar
Bunai K, Takamatsu H, Horinaka T, Oguro A, Nakamura K, Yamane K. Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun. 1996;227:762–7.
Article
CAS
PubMed
Google Scholar
Zanen G, Antelmann H, Meima R, Jongbloed JDH, Kolkman M, Hecker M, Van Dijl JM, Quax WJ. Proteomics dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics. 2006;6:3636–48.
Article
CAS
PubMed
Google Scholar
Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol. 1993;8:727–37.
Article
CAS
PubMed
Google Scholar
Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP. Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem. 2004;279:19302–14.
Article
CAS
PubMed
Google Scholar
Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev. 2000;64:515–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seydlová G, Halada P, Fišer R, Toman O, Ulrych A, Svobodová J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J Appl Microbiol. 2012;112:765–74.
Article
CAS
PubMed
Google Scholar
Moliere N, Turgay K. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res Microbiol. 2009;160:637–44.
Article
CAS
PubMed
Google Scholar
Zimmer J, Nam Y, Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature. 2008;455:936–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolhuis A, Broekhuizen CP, Sorokin A, Van Roosmalen ML, Venema G, Bron S, Quax WJ, Van Dijl JM. SecDF of Bacillus subtilis, a molecular siamese twin required for the efficient secretion of proteins. J Biol Chem. 1998;273:21217–24.
Article
CAS
PubMed
Google Scholar
Van Wely KHM, Swaving J, Broekhuizen CP, Rose M, Quax WJ, Driessen AJM. Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. J Bacteriol. 1999;181:1786–92.
Article
PubMed
PubMed Central
Google Scholar
Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, Van Dijl JM. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. J Biol Chem. 1997;272:25983–92.
Article
CAS
PubMed
Google Scholar
van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S, van Dijl JM, Anne J. Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta. 2004;1694:279–97.
Article
CAS
PubMed
Google Scholar
Tjalsma H, Bolhuis A, Van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, Quax WJ, Venema G, Bron S, Van Dijl JM. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 1998;12:2318–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolhuis A, Matzen A, Hyyryläinen HL, Kontinen VP, Meima R, Chapuis J, Venema G, Van Dijl JM. Singal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem. 1999;274:24585–92.
Article
CAS
PubMed
Google Scholar
Heinrich J, Lundén T, Kontinen VP, Wiegert T. The Bacillus subtilis ABC transporter EcsAB influences intramembrane proteolysis through RasP. Microbiology. 2008;154:1989–97.
Article
CAS
PubMed
Google Scholar
Neef J, Bongiorni C, Goosens VJ, Schmidt B, van Dijl JM. Intramembrane protease RasP boosts protein production in Bacillus. Microb Cell Fact. 2017;16:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M. Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol. 2005;99:363–75.
Article
CAS
PubMed
Google Scholar
Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragai Z, Bron S, van Dijl JM, Kontinen VP. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol. 2001;41:1159–72.
Article
CAS
PubMed
Google Scholar
Lulko AT, Veening JW, Buist G, Smits WK, Blom EJ, Beekman AC, Bron S, Kuipers OP. Production and secretion stress caused by overexpression of heterologous alpha-amylase leads to inhibition of sporulation and a prolonged motile phase in Bacillus subtilis. Appl Environ Microbiol. 2007;73:5354–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, Kuipers OP, Devine KM, Hecker M, van Dijl JM. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol Microbiol. 2003;49:143–56.
Article
CAS
PubMed
Google Scholar
Stephenson K, Harwood CR. Influence of a cell-wall-associated protease on production of alfa-amylase by Bacillus subtilis. Appl Environ Microbiol. 1998;64:2875–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margot P, Karamata D. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology. 1996;142:3437–44.
Article
CAS
PubMed
Google Scholar
Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol. 2002;184:5661–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zweers JC, Wiegert T, van Dijl JM. Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. Appl Environ Microbiol. 2009;75:7356–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalbey RE, Wang P, van Dijl JM. Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev. 2012;76:311–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh R, Harwood CR, Becher D, Van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res. 2013;12:4101–10.
Article
CAS
PubMed
Google Scholar
Krishnappa L, Monteferrante CG, Neef J, Dreisbach A, Van Dijl JM. Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Appl Environ Microbiol. 2014;80:1463–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noone D, Howell A, Collery R, Devine KM. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol. 2001;183:654–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar Suarez R, Stulke J, van Dijl JM. Less is more: towards a genome-reduced Bacillus cell factory for ‘difficult proteins’. ACS Synth Biol. 2019;8:99–108.
Article
CAS
PubMed
Google Scholar
Bolhuis A, Tjalsma H, Stephenson K, Harwood CR, Venema G, Bron S, van Dijl JM. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J Biol Chem. 1999;274:15865–8.
Article
CAS
PubMed
Google Scholar
Dahl MK, Msadek T, Kunst F, Rapoport G. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem. 1992;267:14509–14.
CAS
PubMed
Google Scholar
Bolhuis A, Sorokin A, Azevedo V, Ehrlich SD, Braun PG, De Jong A, Venema G, Bron S, Van Dijl JM. Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Mol Microbiol. 1996;22:605–18.
Article
CAS
PubMed
Google Scholar
Kingston AW, Liao X, Helmann JD. Contributions of the sigma (W), sigma (M) and sigma (X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol. 2013;90:502–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyyrylainen HL, Sarvas M, Kontinen VP. Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol. 2005;67:389–96.
Article
CAS
PubMed
Google Scholar
Westers H, Darmon E, Zanen G, Veening JW, Kuipers OP, Bron S, Quax WJ, van Dijl JM. The Bacillus secretion stress response is an indicator for alpha-amylase production levels. Lett Appl Microbiol. 2004;39:65–73.
Article
CAS
PubMed
Google Scholar
Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 2006;273:3816–27.
Article
CAS
PubMed
Google Scholar
Westers L, Dijkstra DS, Westers H, van Dijl JM, Quax WJ. Secretion of functional human interleukin-3 from Bacillus subtilis. J Biotechnol. 2006;123:211–24.
Article
CAS
PubMed
Google Scholar
Westers L, Westers H, Zanen G, Antelmann H, Hecker M, Noone D, Devine KM, van Dijl JM, Quax WJ. Genetic or chemical protease inhibition causes significant changes in the Bacillus subtilis exoproteome. Proteomics. 2008;8:2704–13.
Article
CAS
PubMed
Google Scholar
Ploss TN, Reilman E, Monteferrante CG, Denham EL, Piersma S, Lingner A, Vehmaanpera J, Lorenz P, van Dijl JM. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions. Microb Cell Fact. 2016;15:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y, Tsukazaki T. Tunnel formation inferred from the I-form structures of the proton-driven protein secretion motor SecDF. Cell Rep. 2017;19:895–901.
Article
CAS
PubMed
Google Scholar
Hyyrylainen HL, Pietiainen M, Lunden T, Ekman A, Gardemeister M, Murtomaki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP. The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology. 2007;153:2126–36.
Article
CAS
PubMed
Google Scholar
Chen J, Fu G, Gai Y, Zheng P, Zhang D, Wen J. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact. 2015;14:92.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Dijl JM, de Jong A, Vehmaanpera J, Venema G, Bron S. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 1992;11:2819–28.
Article
PubMed
PubMed Central
Google Scholar
Meijer WJ, de Jong A, Bea G, Wisman A, Tjalsma H, Venema G, Bron S, van Dijl JM. The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol Microbiol. 1995;17:621–31.
Article
CAS
PubMed
Google Scholar
Bron S, Bolhuis A, Tjalsma H, Holsappel S, Venema G, van Dijl JM. Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol. 1998;64:3–13.
Article
CAS
PubMed
Google Scholar
Sardis MF, Tsirigotaki A, Chatzi KE, Portaliou AG, Gouridis G, Karamanou S, Economou A. Preprotein conformational dynamics drive bivalent translocase docking and secretion. Structure. 2017;25:1056–67.
Article
CAS
PubMed
Google Scholar
Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M. A proteomic view on genome-based signal peptide predictions. Genome Res. 2001;11:1484–502.
Article
CAS
PubMed
Google Scholar
Fabret C, Ehrlich SD, Noirot P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol. 2002;46:25–36.
Article
CAS
PubMed
Google Scholar
Yang M, Galizzi A, Henner D. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 1983;11:237–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuuki T, Nomura T, Tezuka H, Tsuboi A, Yamagata H, Tsukagoshi N, Udaka S. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J Biochem. 1985;98:1147–56.
Article
CAS
PubMed
Google Scholar
Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983;11:7911–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wells JA, Cunningham BC, Graycar TP, Estell DA. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering. Proc Natl Acad Sci USA. 1987;84:5167–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Dijl JM, De Jong A, Smith H, Bron S, Venema G. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis. J Gen Microbiol. 1991;137:2073–83.
Article
PubMed
Google Scholar