Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol. 2008;19(6):556–63.
Article
CAS
PubMed
Google Scholar
Trantas EA, Koffas MA, Xu P, Ververidis F. When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci. 2015;6:7.
Article
PubMed
PubMed Central
Google Scholar
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS. Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. In: Schrader J, Bohlmann J, editors. Biotechnology of Isoprenoids. Berlin: Springer; 2015. p. 355–89.
Chapter
Google Scholar
Singh R, White D, Demirel Y, Kelly R, Noll K, Blum P. Uncoupling fermentative synthesis of molecular hydrogen from biomass formation in Thermotoga maritima. Appl Environ Microbiol. 2018;84(17):e00998-18.
Article
PubMed
PubMed Central
Google Scholar
Singh R, Tevatia R, White D, Demirel Y, Blum P. Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of Thermotoga maritima. Int J Hydrog Energy. 2019;44:7125–36.
Article
CAS
Google Scholar
Du J, Shao Z, Zhao H. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol. 2011;38(8):873–90.
Article
CAS
PubMed
Google Scholar
Furusawa C, Horinouchi T, Hirasawa T, Shimizu H. Systems metabolic engineering: the creation of microbial cell factories by rational metabolic design and evolution. In: Zhong JJ, editor. Future trends in biotechnology. Berlin: Springer; 2012. p. 1–23.
Google Scholar
Davy AM, Kildegaard HF, Andersen MR. Cell factory engineering. Cell Syst. 2017;4(3):262–75.
Article
CAS
PubMed
Google Scholar
Lee S, Mattanovich D, Villaverde A. Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact. 2012;11:156.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003;84(6):647–57.
Article
CAS
PubMed
Google Scholar
Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010;6(4):e1000744.
Article
PubMed
PubMed Central
Google Scholar
Yousofshahi M, Lee K, Hassoun S. Probabilistic pathway construction. Metab Eng. 2011;13(4):435–44.
Article
CAS
PubMed
Google Scholar
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34(8):652–64.
Article
CAS
PubMed
Google Scholar
Gerstl MP, Ruckerbauer DE, Mattanovich D, Jungreuthmayer C, Zanghellini J. Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep. 2015;5:8930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol. 2012;23(4):617–23.
Article
CAS
PubMed
Google Scholar
Saha R, Chowdhury A, Maranas CD. Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol. 2014;29:39–45.
Article
CAS
PubMed
Google Scholar
Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v. 7: updates and new features. Nucleic Acids Res. 2018;47:D649–59.
Article
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2017. https://doi.org/10.1093/bib/bbx085.
Article
PubMed
PubMed Central
Google Scholar
King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2015;44(D1):D515–22.
Article
PubMed
PubMed Central
Google Scholar
Sorokina M, Stam M, Médigue C, Lespinet O, Vallenet D. Profiling the orphan enzymes. Biol Direct. 2014;9(1):10.
Article
PubMed
PubMed Central
Google Scholar
Raushel FM. Finding homes for orphan enzymes. Perspect Sci. 2016;9:3–7.
Article
Google Scholar
Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei Á, Bogos B, et al. Network-level architecture and the evolutionary potential of underground metabolism. Proc Natl Acad Sci. 2014;111(32):11762–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Notebaart RA, Kintses B, Feist AM, Papp B. Underground metabolism: network-level perspective and biotechnological potential. Curr Opin Biotechnol. 2018;49:108–14.
Article
CAS
PubMed
Google Scholar
Rosenberg J, Commichau FM. Harnessing underground metabolism for pathway development. Trends Biotechnol. 2019;37(1):29–37. https://doi.org/10.1016/j.tibtech.2018.08.001.
Article
CAS
PubMed
Google Scholar
Hult K, Berglund P. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 2007;25(5):231–8.
Article
CAS
PubMed
Google Scholar
Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol. 2006;10(5):498–508.
Article
CAS
PubMed
Google Scholar
Tawfik OK, Dan S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79:471–505.
Article
PubMed
Google Scholar
Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its implications for biotechnology. Nat Biotechnol. 2009;27(2):157.
Article
CAS
PubMed
Google Scholar
D’Ari R, Casadesús J. Underground metabolism. BioEssays. 1998;20(2):181–6.
Article
PubMed
Google Scholar
Liechti G, Singh R, Rossi PL, Gray MD, Adams NE, Maurelli AT. Chlamydia trachomatis dapF encodes a bifunctional enzyme capable of both d-glutamate racemase and diaminopimelate epimerase activities. MBio. 2018;9(2):e00204–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbonell P, Faulon J-L. Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics. 2010;26(16):2012–9.
Article
CAS
PubMed
Google Scholar
Jeffryes JG, Colastani RL, Elbadawi-Sidhu M, Kind T, Niehaus TD, Broadbelt LJ, et al. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminformatics. 2015;7(1):44.
Article
Google Scholar
Hadadi N, Hafner J, Shajkofci A, Zisaki A, Hatzimanikatis V. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth Biol. 2016;5(10):1155–66.
Article
CAS
PubMed
Google Scholar
Arora B, Mukherjee J, Gupta MN. Enzyme promiscuity: using the dark side of enzyme specificity in white biotechnology. Sustain Chem Process. 2014;2(1):25.
Article
Google Scholar
Poppe L, Paizs C, Kovács K, Irimie F-D, Vértessy B. Preparation of unnatural amino acids with ammonia-lyases and 2, 3-aminomutases. In: Pollegioni L, Servi S, editors. Unnatural amino acids. Berlin: Springer; 2012. p. 3–19.
Chapter
Google Scholar
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451(7174):86.
Article
CAS
PubMed
Google Scholar
Song CW, Kim JW, Cho IJ, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Synth Biol. 2016;5(11):1256–63.
Article
CAS
PubMed
Google Scholar
Yousofshahi M, Manteiga S, Wu C, Lee K, Hassoun S. PROXIMAL: a method for prediction of xenobiotic metabolism. BMC Syst Biol. 2015;9(1):94.
Article
PubMed
PubMed Central
Google Scholar
Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 2010;38(suppl_2):W138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35(10):904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo AC, Jewison T, Wilson M, Liu Y, Knox C, Djoumbou Y, et al. ECMDB: the E. coli metabolome database. Nucleic Acids Res. 2012;41(D1):D625–30.
Article
PubMed
PubMed Central
Google Scholar
Sajed T, Marcu A, Ramirez M, Pon A, Guo AC, Knox C, et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 2015;44(D1):D495–501.
Article
PubMed
PubMed Central
Google Scholar
Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 2005;33(suppl_1):D334–7.
CAS
PubMed
Google Scholar
Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, Milo R, Rabinowitz J, et al. Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS ONE. 2013;8(9):e75370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan JR. Simplifying decision trees. Int J Man Mach Stud. 1987;27(3):221–34.
Article
Google Scholar
Coote J, Hassall H. The role of imidazol-5-yl-lactate-nicotinamide-adenine dinucleotide phosphate oxidoreductase and histidine-2-oxoglutarate aminotransferase in the degradation of imidazol-5-yl-lactate by Pseudomonas acidovorans. Biochem J. 1969;111(2):237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mühlenweg A, Melzer M, Li S-M, Heide L. 4-Hydroxybenzoate 3-geranyltransferase from Lithospermum erythrorhizon: purification of a plant membrane-bound prenyltransferase. Planta. 1998;205(3):407–13.
Article
PubMed
Google Scholar
Suda S, Lawton EM, Wistuba D, Cotter PD, Hill C, Ross RP. Homologues and bioengineered derivatives of LtnJ vary in ability to form d-alanine in the lantibiotic lacticin 3147. J Bacteriol. 2012;194(3):708–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Häusler E, Petersen M, Alfermann AW. Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Zeitschrift für Naturforschung C. 1991;46(5–6):371–6.
Article
Google Scholar
Nagayama H, Muramatsu M, Shimura K. Enzymatic formation of aminomalonic acid from ketomalonic acid. Nature. 1958;181(4606):417.
Article
CAS
PubMed
Google Scholar
Rakus JF, Kalyanaraman C, Fedorov AA, Fedorov EV, Mills-Groninger FP, Toro R, et al. Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis. Biochemistry. 2009;48(48):11546–58.
Article
CAS
PubMed
Google Scholar
Hassanpour N. Computational methods to advance directed evolution of enzymes and metabolomics data analysis. Tufts University; 2018.
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc. 2003;125(39):11853–65.
Article
CAS
PubMed
Google Scholar
Misra RV, Horler RS, Reindl W, Goryanin II, Thomas GH. Echo BASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res. 2005;33(suppl_1):D329–33.
CAS
PubMed
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(suppl_1):D115–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2014;43(D1):D204–12.
Article
Google Scholar
Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, et al. YMDB: the yeast metabolome database. Nucleic Acids Res. 2011;40(D1):D815–20.
Article
PubMed
PubMed Central
Google Scholar
Sundararaj S, Guo A, Habibi-Nazhad B, Rouani M, Stothard P, Ellison M, et al. The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic Acids Res. 2004;32(suppl_1):D293–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Boyle NM, Morley C, Hutchison GR. Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J. 2008;2(1):5.
Article
PubMed
PubMed Central
Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminformatics. 2011;3(1):33.
Article
Google Scholar