Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297:1183–6.
Article
CAS
PubMed
Google Scholar
Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria. Cell. 2005;123:1025–36.
Article
CAS
PubMed
Google Scholar
Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA. 2002;99:12795–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gordon AJ, Halliday JA, Blankschien MD, Burns PA, Yatagai F, Herman C. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol. 2009;7:e44.
Article
PubMed
CAS
Google Scholar
Meyerovich M, Mamou G, Ben-Yehuda S. Visualizing high error levels during gene expression in living bacterial cells. Proc Natl Acad Sci USA. 2010;107:11543–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 2016;44:7007–78.
PubMed
PubMed Central
Google Scholar
Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70:830–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Atkins JF, Gesteland RF. Recoding: expansion of decoding rules enriches gene expression. Nucleic acids and molecular biology, vol. 24. Berlin: Springer; 2010.
Google Scholar
Gordon AJ, Satory D, Halliday JA, Herman C. Lost in transcription: transient errors in information transfer. Curr Opin Microbiol. 2015;24:80–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penno C, Sharma V, Coakley A, O’Connell Motherway M, van Sinderen D, Lubkowska L, Kireeva ML, Kashlev M, Baranov PV, Atkins JF. Productive mRNA stem loop-mediated transcriptional slippage: crucial features in common with intrinsic terminators. Proc Natl Acad Sci USA. 2015;112:E1984–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satory D, Gordon AJ, Halliday JA, Herman C. Epigenetic switches: can infidelity govern fate in microbes? Curr Opin Microbiol. 2011;14:212–7.
Article
CAS
PubMed
Google Scholar
Anikin M, Molodtsov V, Temiakov D, McAllister WT. Transcript slippage and recoding. In: Atkins JF, Gesteland RF, editors. Recoding: expansion of decoding rules enriches gene expression, vol. 24. New York: Springer; 2010.
Google Scholar
Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV. A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol. 2011;28:3195–211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbough CL. Regulation of gene expression by reiterative transcription. Curr Opin Microbiol. 2011;14:142–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wons E, Furmanek-Blaszk B, Sektas M. RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res. 2015;43:3950–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banavali NK. Partial base flipping is sufficient for strand slippage near DNA duplex termini. J Am Chem Soc. 2013;135:8274–82.
Article
CAS
PubMed
Google Scholar
Neher RA, Gerland U. Dynamics of force-induced DNA slippage. Phys Rev Lett. 2004;93:198102.
Article
PubMed
CAS
Google Scholar
Arnott S, Chandrasekaran R, Hall IH, Puigjaner LC. Heteronomous DNA. Nucleic Acids Res. 1983;11:4141–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klug A, Jack A, Viswamitra MA, Kennard O, Shakked Z, Steitz TA. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J Mol Biol. 1979;131:669–80.
Article
CAS
PubMed
Google Scholar
Nelson HC, Finch JT, Luisi BF, Klug A. The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature. 1987;330:221–6.
Article
CAS
PubMed
Google Scholar
Rhodes D, Klug A. Sequence-dependent helical periodicity of DNA. Nature. 1981;292:378–80.
Article
CAS
PubMed
Google Scholar
Yoon C, Privé GG, Goodsell DS, Dickerson RE. Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc Natl Acad Sci USA. 1988;85:6332–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kvaratskhelia M, Budihas SR, Le Grice SF. Pre-existing distortions in nucleic acid structure aid polypurine tract selection by HIV-1 reverse transcriptase. J Biol Chem. 2002;277:16689–96.
Article
CAS
PubMed
Google Scholar
Sarafianos SG, Das K, Tantillo C, Clark AD, Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 2001;20:1449–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molodtsov V, Anikin M, McAllister WT. The presence of an RNA:DNA hybrid that is prone to slippage promotes termination by T7 RNA polymerase. J Mol Biol. 2014;426:3095–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashkina E, Anikin M, Brueckner F, Pomerantz RT, McAllister WT, Cramer P, Temiakov D. Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell. 2006;24:257–66.
Article
CAS
PubMed
Google Scholar
Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT. A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol Cell. 2006;24:245–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuchihashi Z, Brown PO. Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. Genes Dev. 1992;6:511–9.
Article
CAS
PubMed
Google Scholar
Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF. Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci USA. 2000;97:1683–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbough CL, Switzer RL. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev. 2008;72:266–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol. 2005;6:R25.
Article
PubMed
PubMed Central
Google Scholar
Gordon AJ, Satory D, Halliday JA, Herman C. Heritable change caused by transient transcription errors. PLoS Genet. 2013;9:e1003595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rockah-Shmuel L, Tóth-Petróczy Á, Sela A, Wurtzel O, Sorek R, Tawfik DS. Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins. PLoS Genet. 2013;9:e1003882.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SG. Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA. 2008;105:14934–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wernegreen JJ, Kauppinen SN, Degnan PH. Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol. 2010;27:833–9.
Article
CAS
PubMed
Google Scholar
Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990;18:3529–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groebe DR, Uhlenbeck OC. Characterization of RNA hairpin loop stability. Nucleic Acids Res. 1988;16:11725–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong XF, Reznikoff WS. Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. J Mol Biol. 1993;231:569–80.
Article
CAS
PubMed
Google Scholar
Traverse CC, Ochman H. Genome-wide spectra of transcription insertions and deletions reveal that slippage depends on RNA:DNA hybrid complementarity. MBio. 2017;8:e01230.
Article
PubMed
PubMed Central
Google Scholar
Murakami KS. Structural biology of bacterial RNA polymerase. Biomolecules. 2015;5:848–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller WG, Lindow SE. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene. 1997;191:149–53.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Vinella D, Potrykus K, Murphy H, Cashel M. Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli. J Bacteriol. 2012;194:261–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177:4121–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furmanek-Blaszk B, Boratynski R, Zolcinska N, Sektas M. M1.MboII and M2.MboII type IIS methyltransferases: different specificities, the same target. Microbiology. 2009;155:1111–21.
Article
CAS
PubMed
Google Scholar
Zhou K, Zhou L, Lim Q, Zou R, Stephanopoulos G, Too HP. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol. 2011;12:18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furmanek B, Sektas M, Wons E, Kaczorowski T. Molecular characterization of the DNA methyltransferase M1.NcuI from Neisseria cuniculi ATCC 14688. Res Microbiol. 2007;158:164–74.
Article
CAS
PubMed
Google Scholar
Dopf J, Horiagon TM. Deletion mapping of the Aequorea victoria green fluorescent protein. Gene. 1996;173:39–44.
Article
CAS
PubMed
Google Scholar
Li X, Zhang G, Ngo N, Zhao X, Kain SR, Huang CC. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J Biol Chem. 1997;272:28545–9.
Article
CAS
PubMed
Google Scholar
Wons E, Koscielniak D, Szadkowska M, Sektas M. Evaluation of GFP reporter utility for analysis of transcriptional slippage during gene expression. Microb Cell Fact. 2018;17:150.
Article
PubMed
PubMed Central
Google Scholar
McAllister WT, Raskin CA. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol Microbiol. 1993;10:1–6.
Article
CAS
PubMed
Google Scholar
Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA. 1985;82:1074–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proshkin S, Rahmouni AR, Mironov A, Nudler E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science. 2010;328:504–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Smit MH, Verlaan PW, van Duin J, Pleij CW. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho. Mol Microbiol. 2008;69:1278–89.
Article
PubMed
CAS
Google Scholar
Stanssens P, Remaut E, Fiers W. Inefficient translation initiation causes premature transcription termination in the lacZ gene. Cell. 1986;44:711–8.
Article
CAS
PubMed
Google Scholar
Chevrier-Miller M, Jacques N, Raibaud O, Dreyfus M. Transcription of single-copy hybrid lacZ genes by T7 RNA polymerase in Escherichia coli: mRNA synthesis and degradation can be uncoupled from translation. Nucleic Acids Res. 1990;18:5787–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopez PJ, Iost I, Dreyfus M. The use of a tRNA as a transcriptional reporter: the T7 late promoter is extremely efficient in Escherichia coli but its transcripts are poorly expressed. Nucleic Acids Res. 1994;22:2434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasman Z, von Hippel PH. Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry. 2000;39:5573–85.
Article
CAS
PubMed
Google Scholar
Studier FW. Bacteriophage T7. Science. 1972;176:367–76.
Article
CAS
PubMed
Google Scholar
Parks AR, Court C, Lubkowska L, Jin DJ, Kashlev M, Court DL. Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase. Nucleic Acids Res. 2014;42:5823–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zwiefka A, Kohn H, Widger WR. Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli. Biochemistry. 1993;32:3564–70.
Article
CAS
PubMed
Google Scholar
Saxena S, Gowrishankar J. Modulation of Rho-dependent transcription termination in Escherichia coli by the H–NS family of proteins. J Bacteriol. 2011;193:3832–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joyce SA, Dreyfus M. In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli. J Mol Biol. 1998;282:241–54.
Article
CAS
PubMed
Google Scholar
Iost I, Guillerez J, Dreyfus M. Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J Bacteriol. 1992;174:619–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell. 2002;10:1151–62.
Article
CAS
PubMed
Google Scholar
Penno C, Sansonetti P, Parsot C. Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol. 2005;56:204–14.
Article
CAS
PubMed
Google Scholar
Zhou YN, Lubkowska L, Hui M, Court C, Chen S, Court DL, Strathern J, Jin DJ, Kashlev M. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli. J Biol Chem. 2013;288:2700–10.
Article
CAS
PubMed
Google Scholar
Chamberlin MJ. Comparative properties of DNA, RNA, and hybrid homopolymer pairs. Fed Proc. 1965;24:1446–57.
CAS
PubMed
Google Scholar
Huang Y, Chen C, Russu IM. Dynamics and stability of individual base pairs in two homologous RNA–DNA hybrids. Biochemistry. 2009;48:3988–97.
Article
CAS
PubMed
Google Scholar
Martin FH, Tinoco I. DNA–RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 1980;8:2295–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steitz TA. The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr Opin Struct Biol. 2004;14:4–9.
Article
CAS
PubMed
Google Scholar
Borukhov S, Lee J, Laptenko O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol Microbiol. 2005;55:1315–24.
Article
CAS
PubMed
Google Scholar
Roghanian M, Zenkin N, Yuzenkova Y. Bacterial global regulators DksA/ppGpp increase fidelity of transcription. Nucleic Acids Res. 2015;43:1529–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satory D, Gordon AJ, Wang M, Halliday JA, Golding I, Herman C. DksA involvement in transcription fidelity buffers stochastic epigenetic change. Nucleic Acids Res. 2015;43:10190–9.
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Mooney RA, Grass JA, Sivaramakrishnan P, Herman C, Landick R, Wang JD. DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. Mol Cell. 2014;53:766–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonner G, Lafer EM, Sousa R. Characterization of a set of T7 RNA polymerase active site mutants. J Biol Chem. 1994;269:25120–8.
CAS
PubMed
Google Scholar
Gueguen E, Wills NM, Atkins JF, Cascales E. Transcriptional frameshifting rescues Citrobacter rodentium type VI secretion by the production of two length variants from the prematurely interrupted tssM gene. PLoS Genet. 2014;10:e1004869.
Article
PubMed
PubMed Central
Google Scholar
Penno C, Hachani A, Biskri L, Sansonetti P, Allaoui A, Parsot C. Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol. 2006;62:1460–8.
Article
CAS
PubMed
Google Scholar
Wenthzel AM, Stancek M, Isaksson LA. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett. 1998;421:237–42.
Article
CAS
PubMed
Google Scholar
Yurieva O, Skangalis M, Kuriyan J, O’Donnell M. Thermus thermophilis dnaX homolog encoding gamma- and tau-like proteins of the chromosomal replicase. J Biol Chem. 1997;272:27131–9.
Article
CAS
PubMed
Google Scholar
Penno C, Parsot C. Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus. J Bacteriol. 2006;188:1196–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strathern JN, Jin DJ, Court DL, Kashlev M. Isolation and characterization of transcription fidelity mutants. Biochim Biophys Acta. 2012;1819:694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashkina E, Anikin M, Brueckner F, Lehmann E, Kochetkov SN, McAllister WT, Cramer P, Temiakov D. Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site. J Biol Chem. 2007;282:21578–82.
Article
CAS
PubMed
Google Scholar
Cheeran A, Babu Suganthan R, Swapna G, Bandey I, Achary MS, Nagarajaram HA, Sen R. Escherichia coli RNA polymerase mutations located near the upstream edge of an RNA:DNA hybrid and the beginning of the RNA-exit channel are defective for transcription antitermination by the N protein from lambdoid phage H-19B. J Mol Biol. 2005;352:28–43.
Article
CAS
PubMed
Google Scholar
Kent T, Kashkina E, Anikin M, Temiakov D. Maintenance of RNA–DNA hybrid length in bacterial RNA polymerases. J Biol Chem. 2009;284:13497–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidorenkov I, Komissarova N, Kashlev M. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol Cell. 1998;2:55–64.
Article
CAS
PubMed
Google Scholar
Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. The RNA–DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell. 1997;89:33–41.
Article
CAS
PubMed
Google Scholar
Chamberlin MJ. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 1992;88:1–21.
PubMed
Google Scholar
Blank A, Gallant JA, Burgess RR, Loeb LA. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry. 1986;25:5920–8.
Article
CAS
PubMed
Google Scholar
Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. Factor-independent transcription pausing caused by recognition of the RNA–DNA hybrid sequence. EMBO J. 2012;31:630–9.
Article
CAS
PubMed
Google Scholar
Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 2007;448:157–62.
Article
CAS
PubMed
Google Scholar
Belogurov GA, Artsimovitch I. Regulation of transcript elongation. Annu Rev Microbiol. 2015;69:49–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Brieba LG, Sousa R. Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry. 2000;39:11571–80.
Article
CAS
PubMed
Google Scholar
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol. 2011;412:793–813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landick R, Yanofsky C. Stability of an RNA secondary structure affects in vitro transcription pausing in the trp operon leader region. J Biol Chem. 1984;259:11550–5.
CAS
PubMed
Google Scholar
Yarchuk O, Iost I, Dreyfus M. The relation between translation and mRNA degradation in the lacZ gene. Biochimie. 1991;73:1533–41.
Article
CAS
PubMed
Google Scholar
Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R. Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci USA. 2009;106:15406–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strauß M, Vitiello C, Schweimer K, Gottesman M, Rösch P, Knauer SH. Transcription is regulated by NusA:NusG interaction. Nucleic Acids Res. 2016;44:5971–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohanty BK, Kushner SR. The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res. 2006;34:5695–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen MT, Bennett PM, von Meyenburg K. Intracistronic polarity during dissociation of translation from transcription in Escherichia coli. J Mol Biol. 1973;77:589–604.
Article
CAS
PubMed
Google Scholar
Goldberg LA. Degradation of abnormal proteins in Escherichia coli. Proc Natl Acad Sci. 1972;69:422–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannistraro VJ, Subbarao MN, Kennell D. Specific endonucleolytic cleavage sites for decay of Escherichia coli mRNA. J Mol Biol. 1986;192:257–74.
Article
CAS
PubMed
Google Scholar
Das A. How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol. 1992;174:6711–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rees WA, Weitzel SE, Das A, von Hippel PH. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda. J Mol Biol. 1997;273:797–813.
Article
CAS
PubMed
Google Scholar
DeVito J, Das A. Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci USA. 1994;91:8660–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franklin NC, Doelling JH. Overexpression of N antitermination proteins of bacteriophages lambda, 21, and P22: loss of N protein specificity. J Bacteriol. 1989;171:2513–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rees WA, Weitzel SE, Yager TD, Das A, von Hippel PH. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc Natl Acad Sci USA. 1996;93:342–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coenye T, Vandamme P. Characterization of mononucleotide repeats in sequenced prokaryotic genomes. DNA Res. 2005;12:221–33.
Article
CAS
PubMed
Google Scholar
Traverse CC, Ochman H. A genome-wide assay specifies only GreA as a transcription fidelity factor. G3 (Bethesda). 2018;8:2257–64.
Google Scholar
James K, Gamba P, Cockell SJ, Zenkin N. Misincorporation by RNA polymerase is a major source of transcription pausing in vivo. Nucleic Acids Res. 2017;45:1105–13.
CAS
PubMed
Google Scholar
Bubunenko MG, Court CB, Rattray AJ, Gotte DR, Kireeva ML, Irizarry-Caro JA, Li X, Jin DJ, Court DL, Strathern JN, Kashlev M. A Cre transcription fidelity reporter identifies GreA as a major RNA proofreading factor in Escherichia coli. Genetics. 2017;206:179–87. https://doi.org/10.1534/genetics.116.198960
Article
CAS
PubMed
PubMed Central
Google Scholar
Imashimizu M, Oshima T, Lubkowska L, Kashlev M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res. 2013;41:9090–104.
Article
CAS
PubMed
PubMed Central
Google Scholar