Open Access

A review on Lactococcus lactis: from food to factory

  • Adelene Ai-Lian Song1Email author,
  • Lionel L. A. In2,
  • Swee Hua Erin Lim3 and
  • Raha Abdul Rahim4
Microbial Cell Factories201716:55

https://doi.org/10.1186/s12934-017-0669-x

Received: 13 November 2016

Accepted: 28 March 2017

Published: 4 April 2017

The Erratum to this article has been published in Microbial Cell Factories 2017 16:139

Abstract

Lactococcus lactis has progressed a long way since its discovery and initial use in dairy product fermentation, to its present biotechnological applications in genetic engineering for the production of various recombinant proteins and metabolites that transcends the heterologous species barrier. Key desirable features of this gram-positive lactic acid non-colonizing gut bacteria include its generally recognized as safe (GRAS) status, probiotic properties, the absence of inclusion bodies and endotoxins, surface display and extracellular secretion technology, and a diverse selection of cloning and inducible expression vectors. This have made L. lactis a desirable and promising host on par with other well established model bacterial or yeast systems such as Escherichia coli, Salmonella cerevisiae and Bacillus subtilis. In this article, we review recent technological advancements, challenges, future prospects and current diversified examples on the use of L. lactis as a microbial cell factory. Additionally, we will also highlight latest medical-based applications involving whole-cell L. lactis as a live delivery vector for the administration of therapeutics against both communicable and non-communicable diseases.

Keywords

Lactococcus lactis Heterologous proteins Recombinant proteins Expression systems Secretion Surface display Microbial cell factory

Background

Despite the common association of Lactococcus lactis with dairy products, the bacterium was originally isolated from plants where it was believed to be dormant, and only became active and multiplied in the gastrointestinal tract after being consumed by ruminants [1]. Originating from the streptococcus genus and re-classified into the Lactococcus genus in 1985, L. lactis is divided into three subspecies namely L. lactis subsp. lactis, L. lactis subsp. cremoris, and L. lactis subsp. hordniae [2]. Phenotypically, it is classified as a gram-positive, spherical, homolactate, non-sporulating, and facultative anaerobic gut bacteria with hundreds of strains and biovariants published to date [3, 4].

Lactococcus lactis has been used for centuries in the fermentation of food especially cheese, yoghurt, sauerkraut and the like, thereby rendering it’s generally recognized as safe (GRAS) status by the Food and Drug Administration (FDA). Apart from imparting flavour, L. lactis being a lactic acid bacteria (LAB) also produces acid which preserves food. Some strains further enhances this preservation property with the production of bacteriocins, thus reinforcing its role in the food industry. Other than its important function in food, L. lactis has become the model LAB when it comes to genetic engineering. Several factors including its small-sized fully sequenced genome (2.3 Mbp), and the development of successfully compatible genetic engineering tools such as cloning and expression systems with customizable options, have rendered it a desirable model. Over the past two decades, L. lactis has vastly extended its application from food to being a successful microbial cell factory (Fig. 1a), and on many occasions, acting as a gram-positive alternative to Bacillus subtilis and Lactobacillus plantarum, or its gram-negative counterpart, Escherichia coli (Fig. 1b) [5].
Fig. 1

a Graph indicating an increasing trend of publications relating to Lactococcus lactis technological advancements and research. b Comparison of publications between Gram positive model organisms—Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis over the past 50 years

This review will cover the many aspects of L. lactis as a cell factory for an immense range of products as well as its role as a vehicle for delivery of therapeutics into the gastrointestinal system. It is to be used as an overview of the enormously extended biotechnological role that L. lactis has so far acquired, indicating other relevant and niche areas involving L. lactis where applicable.

The lactococcal molecular toolbox

Expression systems

One of the reasons L. lactis has emerged to become a successful microbial cell factory system is due to the wealth of genetic knowledge available spanning at least four fully sequenced lactococcal strains [6] and many existing expression systems. Various constitutive and inducible expression systems have been developed for L. lactis as screening of promoters using reporter genes such as beta-galactosidase are a commonly used strategy in developing novel lactococcal expression systems [7, 8]. P45 and P32 are commonly used as constitutive lactococcal promoters, but stronger promoters are still being discovered and developed to improve the system [9].

In most cases, inducible promoters are preferred over constitutive promoters as they provide better control to the user. There are various lactococcal inducible systems such as P(Zn)zitR and Zirex system which are both regulated based on zinc availability where the former and latter are repressed and induced by the presence of zinc, respectively [10]. Other inducible promoters are PA170 which is induced by a decrease in pH during transition of culture to stationary phase thus making it autoinducible [11, 12] and P xylT which is induced by xylose [13]. However, without doubt, the most successful lactococcal expression system to date is the nisin controlled gene expression (NICE) system developed by Kuipers and colleagues in 1995. Nisin is a 34-amino acid anti-microbial peptide whose biosynthesis is encoded by a cluster of 11 genes. Of the 11 genes, nisR and nisK regulate expression of the nisin genes. NisK is a histidine-protein kinase which resides in the cytoplasmic membrane and acts as a receptor for the nisin molecule. Upon reception of nisin, it activates nisR via phosphorylation, which in turn induces transcription of two promoters in the nisin gene cluster: PnisA and PnisF [14].

The host L. lactis NZ9000 is a derivative of the nisin-negative MG1363 strain with the nisR and nisK genes inserted into its chromosome [15]. When a gene of interest is placed downstream the PnisA promoter on a plasmid, expression of that gene can be induced by introduction of sub-inhibitory amounts of nisin (0.1–5.0 ng/ml). The most commonly used expression plasmid is pNZ8048 [15], which enables a gene insertion in the NcoI site overlapping the ATG start codon, allowing direct cloning of the gene fused to the nisA start codon [16]. Other commonly used strains and plasmids of the NICE system are reviewed in “10 years of NICE in L. lactis” [16]. Many of these NICE® plasmids and compatible host strains developed by NIZO Food Research (Netherlands) are now commercially available, with many derivatives being established using NIZO systems including a system for TA-cloning, designated pNZ-T to facilitate restriction enzyme independent cloning [17].

Secretion strategies

Secretion of heterologous proteins are mostly preferred compared to intracellularly expressed proteins due to advantages such as simpler purification steps, higher yields, and better target interactions [18]. In view of this, it is also advantageous to employ the secretion system when developing L. lactis as a host for heterologous protein production [19]. In addition, gram-positive bacteria have a monolayer cell wall that permits direct secretion into the extracellular environment in comparison to E. coli where secreted proteins are mostly stuck in the periplasm [20]. Furthermore, L. lactis only possesses a single extracellular housekeeping protease, HrtA, thereby reducing the chances of secreted heterologous proteins being degraded [21, 22].

Signal peptides (SPs) are N-terminal extensions of a protein which signals the host to target the protein towards the extracellular region by translocation across the cytoplasmic membrane and cell wall. While the sequence of SPs are vastly diversed, they display a common tripartite structure which includes the positively charged N-terminus, the hydrophobic H-region and the negatively charged cleavage region at the C-terminus [23]. In L. lactis, there is only one majorly secreted protein which is Usp45, whose function is still unknown [19]. Nevertheless, the native lactococcal Usp45 SP is the most successful SP used thus far for secretion in L. lactis, and was recently engineered through a series of mutations to further increase its secretion efficiency (SE) by 51% [24]. More recently, we have isolated a novel signal peptide, SPK1 from Pediococcus pentasaceus, with the ability to secrete heterologous proteins with efficiencies comparable to Usp45 in L. lactis [25]. When SPK1 was used to secrete β-cyclodextrin glucanotransferase, although secretion efficiency was higher than USP45, total yield was found to be lower [26], thus demonstrating the complex effects brought upon by SPs, not only on the secretion of heterologous proteins, but on total protein yield as well.

Apart from SPs, past literature have reported several other strategies which have proven to improve SE in L. lactis including the use of synthetic LEISSTCDA propeptide sequence (SPs are followed by a propeptide sequence which is cleaved after translocation to produce the mature protein) [23], and the use of a hrtA mutant strains (the only reported cell surface proteolytic housekeeping gene) [22]. In another strategy, it was shown that the secretion yield of some heterologous proteins can be improved in L. lactis when co-expressed with B. subtilis PrsA protein, which is a surface anchored protein with chaperon-like functions and have been shown to decrease degradation of exported proteins [27].

Surface display systems

The thick and rigid cell wall of gram-positive bacteria as well as the lack of an outer membrane envelope has made them suitable for the cell surface display of proteins. Displaying proteins on bacterial cell wall allows the bacteria to act as carriers of proteins, especially antigens, and allow interaction of displayed proteins with targeted environments. There are five different types of protein anchors described in lactic acid bacteria; (1) transmembrane anchors: (2) lipoprotein anchors which binds to the cell membrane; (3) LPXTG-type cell wall anchoring domains; (4) AcmA-repeats anchor domain; (5) S-layer protein attachments which are bound to cell wall components [28].

In L. lactis, the most commonly used method for surface display of proteins is through the LPXTG sorting signal of surface-associated proteins which are recognized by the sortase enzyme, and covalently bound to the cell wall. In this method, the anchoring mechanism relies on the sortase activity as this membrane-anchored enzyme cleaves the sorting signal of the target protein at its pentapeptide motif (LPXTG) and promotes covalent anchoring of the target protein to the cell wall [29, 30]. However, non-covalent binding of cell surface proteins using lysin motifs (LysM) are also alternatively used, with the LysM of the autolysin AcmA being the most common [31]. More interestingly, non-covalent binding of antigens/proteins using AcmA has been shown to allow trans surface display, where proteins are displayed from the outside of L. lactis host cells, as we have previously shown [32]. Using this method, expression of heterologous proteins can be performed in a non-lactococcal host (e.g. E. coli), purified and bound non-covalently to the lactococcal cell wall simply by mixing the purified heterologous proteins to lactococcal cell cultures. More importantly, this enables the lactococcal cells to carry heterologous proteins without being genetically modified, a method which have also been demonstrated with Newcastle disease virus hemagglutinin-neuraminidase (HN) protein for specific targeting of breast cancer cells [33]. In addition, eukaryotic proteins which require post-translational modifications can also be expressed in eukaryotic hosts, and subsequently attached to L. lactis for delivery [34]. A variation of this method uses GEM (gram-positive enhancer matrix) particles which are killed non-recombinant lactococcal cells devoid of most intact cell wall components and intracellular materials. Antigens fused to streptococcal protein anchor enable them to be docked onto the peptidoglycan of GEM particles, which was also shown to elicit an immune response in nasally immunized mice [35]. A similar approach was also employed recently for subtilisin QK-2 using GEM [36]. The drawback of this system, however, is that the lactococcal cells are merely a carrier of the displayed protein, not a factory producing the proteins, thus repeated introduction of proteins displayed on lactococcal cells may be needed.

Lactococcus lactis as a cell factory

Production of industrial metabolites and enzymes

Naturally, L. lactis is a strictly homolactic fermentative bacteria which completely converts its carbon source into l-lactate from pyruvate through a very efficient lactate dehydrogenase (LDH) enzyme with a Km value of 1.1 mM [37]. Lactic acid is an industrially important compound as it is used as an acidifier for preservation, as a flavour enhancing agent in the food industry [38], as an emulsifier and moisturizing agent in the cosmetic industry, and as an important raw material in the pharmaceutical industry [39]. Additionally, polymerization of lactic acid yields polylactic acid (PLA), which is a biodegradable thermoplastic polymer highly anticipated to potentially replace non-renewable oil based polymers [39]. While lactic acid remains the main product produced by L. lactis and other LAB, under different physiological conditions, three other enzymes apart from LDH also converts pyruvate: (i) α-acetolactate synthase (ALS) which is active at high pyruvate concentrations and low pH (≤6.0) [40]; (ii) pyruvate-formate-lyase (PFL) which is active under anaerobic conditions and at relatively high pH of >6.0 [41]; and (iii) pyruvate dehydrogenase (PDH) which is active under aerobic conditions and low pH (≤6.0) [42]. Therefore, L. lactis is also a natural factory for the production of many other aromatic acetylated products such as diacetyl, acetaldehyde and acetate, resulting from mixed fermentation. Nevertheless, LDH still dominates with maximal enzymatic activity at high sugar concentrations and high intracellular nicotinamide adenine dinucleotide dehydrogenase (NADH) levels [40, 43].

To date, metabolic engineering efforts in L. lactis have focussed primarily on customizing the prioritization of mixed fermentation products by re-routing lactate-pyruvate metabolism towards other industrially important products such as diacetyl, acetaldehyde and acetoin which are important flavour compounds in dairy products. This was achieved through the use of an LDH deficient L. lactis strain which consequently increased the amount of α-acetolactate in place of lactate, where the former is a reduced carboxylated form of diacetyl [40]. This together with other similar studies have indicated that LDH deficiency could result in >80% of lactose being converted into other fermentation products other than lactic acid through overproduction of ALS and activation of the diacetyl-acetoin pathway for pyruvate metabolism [44].

Another common metabolic engineering strategy in L. lactis involves manipulation of the NADH:NAD+ co-factor ratio which influences fermentation patterns because the in vivo activity of several central redox enzymes, namely glyceraldehyde 3-phosphate dehydrogenase (GADPH), PDH, LDH, alcohol dehydrogenase (ADH) and NADPH oxidase (NOX), are significantly influenced by this ratio. For example, the nox gene which encodes NADH oxidase converts molecular oxygen to water at the expense of NADH. Overexpression of NOX diminishes the NADH pool, and increases NAD+, thereby re-routing pyruvate from the NADH-dependent LDH pathway to either the NADH independent ALS pathway or the NAD+ dependent PDH pathway. This strategy has been shown to be successful in shifting homolactic fermentation to mixed-acid fermentation with acetate and acetoin as main products, while producing α-acetolactate and diacetyl in small amounts [45]. Combining this with disruption of the gene encoding α-acetolactate decarboxylase also yielded high diacetyl production from glucose and lactose [46]. In fact, it was shown that the adjustment of aeration levels alone, even in minute amounts without any metabolic engineering was able to greatly re-route up to 80% of fermentation products from lactate to other products such as formate, acetate, and ethanol [47]. On a different note, L. lactis has also been engineered to be a factory for the production of sweeteners, including the introduction of heterologous pathways or enzymes such as alanine dehydrogenase from Bacillus sphaericus for the production of l-alanine [48].

More recently, the emphasis of metabolic engineering in L. lactis have somewhat shifted towards increasing the production of non-food flavouring metabolites. Examples include the B vitamins, primarily folate (B11) and riboflavin (B2), which were overexpressed in L. lactis using the NICE system [4951]. These reports highlight L. lactis as a food-grade platform where the production of multivitamins from guanosine triphosphate (GTP) precursors can be increased by 3 to 10 folds following overexpression of a GTP biosynthetic enzyme (GTP cyclohydrolase I) [49, 50].

Other recent studies have shown the potential of L. lactis in bacteriocin production as a bio-preservative against Listeria monocytogenes [52, 53] and these bacteriocins have been found useful also for clinical applications [54] via prevention/reduction of biofilm formation. LAB bacteriocins are antimicrobial peptides which have been ribosomally synthesized at transcriptional and post-transcriptional levels; this confers auto-immunity to the producer strain [55]. Examples of more recent bacteriocins from L. lactis include lacticin 3147 [56], lacticin Q/Z [57] and LsbB [58]. However, the most well-known and best characterised lantibiotic is nisin (term “lantibiotic” derived from Schnell [59] as lanthionine containing antibiotic), which had been discussed in depth in the preceding section. Current efforts are ongoing [6062] to characterise bacteriocins from L. lactis and some favourable attributes for applications include acid stability and thermotolerance to high temperatures in addition to improvement in production systems.

On another note, L. lactis has also been engineered to produce ethanol as biofuels when supplemented with cheap renewable feedstock waste products [63]. A summary of industrial products produced on a lactococcal platform is summarized in Table 1.
Table 1

List of industrial enzymes and compounds produced from various Lactococcus lactis strains

Industrial type & products

Applications/functions

Lactococcus lactis strain

References

Compounds

 Lactic acid

Preservative, flavouring, polylactic acid, plastic, emulsifier, moisturizer

All strains

[43]

 Acetoin/diacetyl

Flavouring

CRL264

[44]

 l-alanine

Sweetener

AlaDH+LDH

[48]

 Linalool

Flavouring

NZ9000

[64]

 Germacrene D

Antimicrobial, insecticidal, pheromones

NZ9000

[65]

 β-Sesquiphellandrene

Antimicrobial, antioxidant, anticancer

NZ9000

[66, 67]

 Hyaluronic acid

Cosmetics, medical

NZ9020

Vitamins

 Folate (B11)

Health supplements

NZ9000

[4951]

 Riboflavin (B12)

Health supplements

NZ9000

Biofuels

 Ethanol

Energy source

CS4435

[63]

Peptides

 Bacteriocin

Anti-microbial, preservative

NZ9000

[52, 68]

 Brazzein

Sweetener

N/S

[69]

 Mabinlin II

Sweetener

N/S

[70]

 Nisin Z

Food preservative

F44

[71]

Enzymes

 β-Cyclodextrin glucanotransferase

Starch degradation

NZ9000

[26]

 Coumarate CoA ligase (4CL)

Metabolic engineering

FI9974

[72]

 Alcohol acyltransferase (SAAT)

Metabolic engineering

NZ9000

[64]

 Linalool/nerolidol synthase (FaNES)

Metabolic engineering

NZ9000

[64]

 Sesquiterpene synthase

Metabolic engineering

NZ9000

[65]

 3-Hydroxy-3-methylglutaryl CoA reductase (HMGR)

Metabolic engineering

NZ9000

[66]

 Bile salt hydrolase (BSH)

Intestinal metabolism, probiotics

NZ3900

[73]

 Acid urease

Urea hydrolysis

N/S

[74]

N/S not specified

Production of therapeutics

Due to its immunomodulatory properties and its ability to survive passage through the gastrointestinal tract (GIT), yet not colonize the gut unlike Lactobacillus spp., L. lactis has been used as a vehicle to deliver therapeutics such as cytokines into the human body. The first evidence of such applications was published in Steidler et al. [75], where engineered secretion of interleukin-10 (IL-10) in L. lactis was used to treat inflammatory bowel disease (IBD) in colitis-induced mice. Since then, L. lactis secreting IL-10 has gone into clinical trials and concurrently ushered in the emergence of a genetically modified thymidine auxotrophic L. lactis strain for biological containment which disallows growth of the bacteria unless provided externally with thymidine or thymine [76, 77]. While clinical trial results were not as promising as hoped, this bio-containment strategy was highly successful, making it a safe genetically modified organism (GMO) strain which addresses concerns relating to release to the public. Since the use of IL-10 for IBD treatment, many other therapeutics have been produced in L. lactis (Table 2) for the treatment of IBD including other cytokines, antioxidant enzymes and protease inhibitors [78].
Table 2

Recombinant therapeutics produced from various Lactococcus lactis strains

Therapeutic type & products

Disorder/disease

Lactococcus lactis strain

References

Cytokines/ligands

 Interleukin-6 (IL-6)

Adjuvant

IL1403

[123]

 Interleukin-10 (IL-10)

Adjuvant, hypersensitivity type I, inflammatory bowel disease (IBD)

N/S

[75, 79]

 Interleukin-12 (IL-12)

Adjuvant; hypersensitivity type I; asthma

NZ9000

[75, 79, 81]

 Interleukin-18 (IL-18)

Adjuvant, immunomodulatory,

MG1363

[124]

 Hemagglutinin-neuraminidase (HN) protein of NDV

Breast cancer

NZ9000

[33]

 RANKL

Cancer vaccine adjuvant

IL1403

[84]

 Transforming growth factor beta 1 (TGF-β1)

IBD

NZ9000

[82]

 Epidermal growth factor (EGF) Trefoil factor 3 (TFF3)

Wound healing

NZ9000

[125]

 Kisspeptin (KiSS 1)

Colorectal cancer

NZ9000

[88]

 Insulin-like growth factor I (IGF-I)

Colitis

NZ9000

[83]

Allergens

 Peanut allergen (Ara 2)

Hypersensitivity type I

CHW9

[85]

 Birch allergen (Bet v1)

Hypersensitivity type I

NZ9800

[86]

 House dust mite allergen (Der p2)

Hypersensitivity type I

NZ9000

[87]

Enzymes

 Subtilisin QK-2

Thrombosis

NZ9000 & NZ3900

[36]

 Heme oxygenase-1 (rmHO-1)

Acute colitis

NZ9000

[126]

Vaccines/antigens

 Tetanus toxin fragment C (TTFC)

Tetanus

UCP1054

[96, 97]

 HPV-16-E7

HPV-16 induced cancers

NZ9000

[101, 120]

 Pneumoccal antigen

Pneumococcal infections, meningitis

N/S

[35, 104]

 Listeriolysin O & mt Internalin A

Listeriosis

NZ9000

[34]

 Glycosylated tyrosinase related protein-2 (TRP-2)

Skin cancer

MG1363

[102]

 Carcinoembryonic antigen (CEA)

Colon cancer

NZ9000

[127]

 Plasmodium falciparum recombinant antigen (R0.10C)

Malaria

N/S

[105]

 Influenza virus nucleoprotein (NP)

Influenza

NZ9000

[128]

 Shigella IpaB and IpaD

Shigellosis

PA1001

[106108]

 Neuraminidase (NA1)

Avian influenza H5N1

NZ3000

[109, 110]

 Hemagglutinin (HA1)

Avian influenza H5N1

NZ9000

[111]

 Hemagglutinin (HA1)

Avian influenza H1N1

NZ9000

[112]

 M2e antigen

Avian influenza H5N2

LM2301

[113]

 IBV multi-epitope geneEpiC

Avian bronchitis

NZ3900

[114]

 Campylobacter rCjaAD antigen

Avian gastroenteritis

IL1403

[115]

 GroEL, heat-shock protein

Brucelosis

NZ9000

[116]

 Cu–Zn SOD of Brucella abortus

Brucelosis

NZ9000

[129]

 Mycobacterial ESAT-6 antigen

Tubercolosis

N/S

[117]

 D1 and D4 aerolysin

Aeromonas spp. infection

Lac-D1ae

[118]

 SiMA antigen

Streptococcal infection

BFE920

 Myelin epitopes

Multiple sclerosis, encephalomyelitis

IBB360

[130]

 T1D autoantigens

Type-1 diabetes mellitus

N/S

[131]

 Enterohemorrhagic Escherichia coli (EHEC) antigen (EspB)

EHEC infection

N/S

[132]

 Multi-urease epitopes (CTB-UE)

Helicobacter pylori infection

NZ9000

[133]

 Helicobacter pylori hspA

Helicobacter pylori infection

NZ3900

[71]

 HIV-1 Gag-p24

Human immunodeficiency virus (HIV) infection

N/S

[134]

 Capsid protein of porcine circovirus type 2 (PCV2)

Swine circovirus associated disease

N/S

[135]

 Staphylococcus aureus HtrA protease

Staphylococcal infection

IL1403

[136]

 Staphylococcus aureus clumping factor A (ClfA)

Staphylococcal infection

N/S

[137]

 Hepatitis E virus antigen

Hepatitis E virus infection

NZ3900

[138]

 Toxin A/B (TcdA/B)

Clostridium difficile infection

N/S

[139]

 F and G glycoproteins of Respiratory syncytial virus

Upper respiratory tract infection

NZ9000

[140]

Others

 HSP65-6IA2P2

Type 1 diabetes mellitus

NZ9000

[90]

 Gamma-amino butyric acid (GABA)

Hypotensive, anti-cancer, anti-anxiety

All ssp. Lactis

[93]

 Bacillus thuringiensis crystal protein Cry5B

Anthelminthic

NCK203

[89]

 Serine protease inhibitors

IBD

NZ9000

[82]

 Glucagon like peptide-1 (GLP-1)

Type 2 diabetes mellitus

N/S

[141]

N/S not specified

When it comes to hypersensitivity, IL-10 secreting L. lactis strains have also been investigated as treatment against food allergy such as cow’s milk allergy [79]. In this study involving β-lactoglobulin-induced anaphylaxis in mice, it was shown that oral administration of a recombinant L. lactis delivering IL-10 gastrointestinally prior to sensitization was able to induce immunotolerance towards the allergen, thus reducing food-induced anaphylaxis. Recombinant L. lactis producing IL-12, a T-helper 1 (Th1) bias cytokine has also been investigated for the treatment of asthma, successfully skewing the Th2 dominant immunologic response in murine models of asthma to a Th1 response which simultaneously elevates interferon gamma (IFN-γ) whilst reducing IL-4 levels [80]. To date, L. lactis has been used to co-produce or secrete a wide range of other adjuvants and growth factors. Successful examples include murine IL-12 [81], transforming growth factor beta 1 (TGF-β1) [82], insulin-like growth factor I [83], receptor activator of nuclear factor kappa-B ligand (RANKL) [84] and others as detailed in Table 2.

Apart from the use of L. lactis in delivering cytokines to alleviate allergy symptoms, L. lactis has also been developed as factory for production and purification of the allergen itself. In 2007, Glenting et al. reported the production of immunologically active recombinant peanut allergen Ara 2 in L. lactis with high yields [85]. Recombinant allergens are arguably superior over natural allergen owing to its purity and batch to batch consistency. Furthermore, in addition to playing the role of factory in producing allergens, L. lactis can simultaneously be used to deliver allergens such as the major birch allergen Bet-v1 [86], and the house dust mite (HDM) allergen Der p2 [87] through the GIT to achieve immunotolerance prior to sensitization. L. lactis are naturally great delivery vehicles for allergy immunotherapy as many non-recombinant LAB by itself, including L. lactis, have shown anti-allergic effects through their immunomodulatory effects, owing to their cell wall components and other non-established factors.

Recently, in the field of anti-cancer therapeutics, recombinant L. lactis NZ9000 was used to secrete tumour metastasis-inhibiting peptides such as KiSS1 which inhibited HT-29 cell proliferation and migration through the induction of apoptosis pathways and by down regulating matrix metallopeptidase 9 (MMP-9) expression. This suggested a possible role for L. lactis as a cell factory for colorectal cancer therapeutics [88]. Other examples of therapeutics produced using L. lactis as a microbial cell factory include subtilisin QK-2 as an anti-thrombotic agent [36], BT crystal protein Cry5B as an anthelminthic [89], heat shock protein (hsp) 65-6IA2P2 against type 1 diabetes [90] and many others as summarized in Table 2.

In addition to protein- and whole cell-based therapeutics, metabolites with medicinal applications are also produced by L. lactis. An example is γ-amino butyric acid (GABA), which is a non-protein amino acid with hypotensive, anti-cancer, anti-anxiety and diuretic properties [91, 92]. Naturally produced GABA are generally favourable compared to its chemically synthesized counterpart, and also contributes to pH tolerance, hence making LAB excellent GABA producing candidates [93]. In L. lactis, GABA production can also be used to differentiate between L. lactis ssp. lactis and L. lactis ssp. cremoris as the former produces GABA while the latter does not [94]. Other examples of medicinal metabolites successfully synthesized by L. lactis includes hyaluronic acid, which is a carbohydrate polymer used in wound healing, dermatitis and cosmetic-based applications [67].

Vaccine delivery system

Without doubt, one of the most exciting aspects of modern L. lactis usage is as a factory for antigen production, thus allowing the bacteria to act as live vaccines. Using LAB as vaccine carriers is appealing as they are able to induce both mucosal and systemic immune responses, have adjuvant properties, and is free from risks associated with the use of conventional attenuated live pathogens such as Salmonella spp. and Mycobacterium spp. [95]. When it comes to vaccine design, the capability of L. lactis to surface display antigens also transforms it into the preferred host with increased immunogenicity compared to its intracellularly expressed or secreted counterparts [96]. One of the earliest pioneering vaccine initiatives using L. lactis involved expressing tetanus fragment toxin C (TFTC), which was highly successful in eliciting immune responses in mice, especially when administered together with IL-2 and IL-6 adjuvants [97]. Since then, a variety of antigens against both human and animal diseases have been expressed, secreted and surface displayed in L. lactis as detailed in several past reviews with a comprehensive list of LAB-based vaccines [98100], together with an updated list as detailed in Table 2.

Over the past decade, the emergence of cancer vaccines developed via a lactococcal platform has also been gaining momentum following the onset of prokaryotic antigen production. These include a vaccine against human papilloma virus type-16 induced tumours where L. lactis surface displaying the E7 antigen whist secreting IL-12 was shown to provide full prophylactic protection in immunized mice and was also able to induce regression of palpable tumours in tumour-induced mice [101]. Other cancer antigens expressed using L. lactis includes glycosylated tyrosinase related protein-2 (TRP-2) tumour antigen against melanoma (although this has not gone to animal trials) [34] and carcinoembryonic antigen (CEA) against colon cancer in mice [102]. The latter showed successful induction of immune response in mice as indicated by higher levels of CEA-specific secretory IgA compared to controls.

Being capable of heterologous protein expression, characterization of bacterial and viral virulence factors using L. lactis was also made possible without the pathogen’s clinical manifestations. A very recent example is the expressive characterization of the Streptococcus mutans surface glycoprotein, Cnm in L. lactis which was found to mediate binding to extracellular matrix (ECM) proteins in a rabbit model of infective endocarditis [103]. In addition, virulence factors comprising mutated internalin A and listeriolysin O (LLO) from food-borne pathogen L. monocytogenes have been proposed for use in DNA vaccination using L. lactis as hosts for plasmid production [104]. Recombinant L. lactis strains harbouring viral antigens such as influenza A nucleoprotein (NP) have also been studied, and shown to elicit superior immunogenicity, especially when coupled with oral adjuvants such as cholera toxin B (CTB) subunits [105].

Various lactococcal-based vaccines for animal diseases have also been developed, mostly with favourable results. In poultry diseases, extensive research has been performed against the H5N1 virus, using L. lactis as a vaccine delivery system via oral and intranasal administration routes in chickens and ferrets [106109]. It was demonstrated that these lactococcal vaccines were able to induce high hemagglutinin A (HA)-specific serum IgG and fecal IgA, with the secreted form being more efficient than the intracellularly expressed vaccine [109]. Following this, surface display of HA antigen onto L. lactis surface using PgsA anchor motif administered orally together with (CTB) as adjuvant was also found to elicit high antigen-specific cell-mediated responses in mice when challenged with lethal dosages of H5N1 [110]. This demonstrated the stability and immunogenicity of surface anchored proteins as per many previous studies. Other lactococcal based vaccines developed or under development for the poultry industry include those against H1N1 [111], H5N2 [112], avian infectious bronchitis virus [113] and infections by Campylobacter jejuni [114].

One of the earliest uses of L. lactis in the livestock industry was reported a decade ago, where GroEL heat shock protein from Brucella abortus was expressed and secreted as a vaccine candidate. However, its intracellular expression was shown to be unstable with a low secretion efficiency [115]. Through technological advancements in expression and secretion systems, consecutive attempts were proven more successful when oral administration of recombinant lactococcal strains secreting Cu–Zn superoxide dismutase (SOD) of B. abortus was found to render protective immunity against brucellosis when tested in mice [116]. Very recently, oral administration of recombinant insulin-like growth factor I (IGF-I) expressed in L. lactis also reported good biological activity, where symptoms and development of dextran sodium sulphate (DSS)-induced colitis in mice were attenuated [83]. Use of L. lactis has also made hallmarks in the aquaculture industry where lactococcal-based vaccines against Aeromonas hydrophila using D1 and D4 aerolysin genes were developed with increased survival in tilapia fish when administered intraperitoneally and orally [117]. Lactococcal expression of the SiMA antigen, a Streptococcus iniae membrane protein, has also incurred significant vaccinative and probiotic effects in olive flounders [118].

At present, enhancements to the lactococcal vaccine delivery system are continuously being carried out, amongst which, includes the recent incorporation of the cell-surface anchored fibronectin binding protein A (FnBPA) from Staphylococcus aureus which functions to increase immunomodulatory properties of L. lactis strains during mucosal delivery as a live DNA vaccine vector [119, 120]. L. lactis shuttle vectors such as the pNZ:vig [121] and pPERDBY reporter plasmid [122] for the delivery of DNA vaccines to mammalian cells have also been developed and in the latter shown to perform efficiently in the absence of invasive proteins or relevant chemical treatments. As an effort to provide protection against gastric digestion, enteric coated encapsulation of lactococcal vaccines have also been explored with superior levels of antibodies being elicited, conferring full protection against H5N1 in mice [109]. It is apparent from Table 2 that the use of L. lactis as a factory for antigens and adjuvants renders it a very promising live bacterial vaccine host, consequently turning it into one of the most extensively researched areas.

Production of heterologous plant-based proteins

Although unconventional, L. lactis has also been engineered as a cell factory for the production of both plant proteins and bioactive compounds as described in Table 1. Coumarate CoA ligase (4CL) from Arabidopsis thaliana was the first functional plant protein to be expressed in L. lactis [72]. A year later, brazzein, a sweet tasting plant protein, extracted from the fruit of the West African plant, Pentadiplandra brazzeana, was successfully expressed, albeit in low amounts [142]. The establishment of plant protein expression in L. lactis soon led to the metabolic engineering and consequent production of industrially applicable secondary metabolites. In 2007, alcohol acyltransferase (SAAT) and linalool/nerolidol synthase (FaNES) of strawberry were reportedly expressed in L. lactis, leading to the production of the flavouring and scent compound, linalool [64], which is used in various essential oil-containing cosmetics and fragrances.

Our research group has also successfully expressed two plant terpene synthases from orchid [65] and kesum (Persicaria minor) [66] in L. lactis leading to the production of germacrene D and β-sesquiphellandrene, respectively. Interestingly, L. lactis uses the mevalonate pathway (MVA) for terpenoid biosynthesis, a pathway more commonly found in eukaryotes. Most prokaryotes such as E. coli uses another terpenoid biosynthesis pathway called the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, hence almost all metabolic engineering research for heterologous plant terpenoid production have been focussed on the MEP pathway of E. coli or the MVA pathway of yeast. At present, the lactococcal MVA accommodates much room for optimization as initial attempts to metabolically engineer this pathway resulted in more than doubling of sesquiterpenes produced [143].

Production of membrane-based proteins

Membrane proteins are typically difficult proteins to express and purify due to their nature which includes low abundance, relatively high hydrophobicity, instability and various topologies including polytopic proteins with multiple transmembrane regions. Due to these limitations, only about 400 three-dimensional membrane protein structures have been elucidated compared to 40,000 soluble proteins, which accounts for a mere 0.01% [144]. Over the past two decades, L. lactis has been proven to be an excellent host for the expression of membrane proteins due to several advantages: (i) they are amino acid auxotrophs allowing incorporation of labels for detection, (ii) they only have a single membrane layer compared to E. coli, (iii) they have a small genome size with little proteolytic activity, and (iv) they come with extensive genetic engineering tools including the highly efficient and well tested NICE system.

To date, there are close to 100 membrane proteins expressed in L. lactis using the NICE system alone, including both prokaryotic and eukaryotic membrane proteins [144]. Kunji and colleagues [145] were the pioneers in using L. lactis as an alternative host for membrane protein overexpression of eukaryotic expression, successfully expressing human Lys–Asp–Glu–Leu KDEL receptor and mitochondrial carriers from yeasts and fungi. Prior to this, only prokaryotic membrane protein expressions were performed in L. lactis, mostly with homologous proteins, some which were able to reach up to 30% of total membrane proteins [144]. Most recently, L. lactis was successfully used to express rat and human membrane proteins involved in liver detoxification with higher yields than conventional E. coli and Saccharomyces cerevisiae expression systems [146].

Lactococcus lactis has also been developed as an alternative system for the production of plant membrane proteins, using A. thaliana peripheral and intrinsic proteins as a model [147]. A lactococcal cloning strategy compatible to Gateway entry vectors were established where available Gateway-based A. thaliana cDNA libraries were cloned into Gateway entry vectors and transferred into a destination vector (pBS-RFA) through recombination, thus allowing for proper reading frame preservation. The gene of interest is then excised and cloned into pNZ8148 and expressed as usual using the NICE system. This method allows for the use of Gateway available cDNA libraries, which in essence, cannot be used with the lactococcal NICE system due to host incompatibility. Using this method, six A. thaliana membrane proteins were produced of which three were successfully solubilized and purified with two of them being shown to be functional [147].

Using modified Gateway-compatible systems, research efforts were extended to the expression of 20 different membrane proteins from plants, human and bacteria in six different hosts including L. lactis, where Lactococcal-based expression was found to be an efficient and valuable alternative to E. coli, many times complementing proteins which were unsuccessfully produced in the latter [148]. While E. coli remains the superior host in terms of production yield in most cases, the fusion of proteins with Mistic, a 13 kDa protein from B. subtilis was reported to facilitate and improve membrane protein production in L. lactis. A more recent research validated the use of Mistic in successfully boosting the expression of both eukaryotic and prokaryotic membrane protein expression in L. lactis [149].

Challenges and future prospects

While manipulations involving L. lactis enables various heterologous genes to be expressed, its yield is very much case-dependant, with lesser problems when it comes to closely related organisms such as Streptococcus spp., Enterococcus spp., Staphylococcus spp. and low-GC Lactobacillus spp. However, the greatest obstacle still revolves around its codon usage and/or distribution of rarely used codons [16, 150]. Additionally, gram protein per litre secretion in the microaerophilic Lactococcus spp. is still generally less robust when compared to the aerobically growing B. subtilis. Previously, genes encoding toxic gene products typically resulted in unsuccessful cloning attempts, further challenging the already-low transformation rate, but this was overcome by incorporating the nisA promoter in single copy on the chromosome [151, 152].

Following up on the use of NICE system, controlling the consistency of dosages and delivery of therapeutic molecules is also difficult to predict with L. lactis owing to the loosely controlled stability and small intestinal absorption of nisin, which ultimately influences the pharmacokinetics and pharmacodynamics interplay [69]. Another challenge involves the fine balance between switching from homolactic to mixed-acid fermentation in L. lactis which remains unresolved to-date [153], and elucidating this may vastly improve the potential of L. lactis as a cell factory.

In spite of limited systematic studies available on the acquired antibiotic resistance especially from food due to L. lactis designated GRAS status, a study documenting multiple drug efflux proteins attributing resistance to ethidium bromide was discovered in L. lactis subsp. lactis MG1363 [154]. Since much of the use for L. lactis as a cell factory involves ingestion or uptake into the host, there lies a risk for horizontal transfer of these efflux pumps to other commensal or potentially pathogenic bacteria. In other words, transit of L. lactis through the GIT which is frequently exposed to antibiotics may cause susceptible gene exchange with the surrounding flora, potentially leading to antibiotic resistant strains. In addition, release of chloramphenicol resistant pNZ-harbouring L. lactis strains into the environment is also a grave concern.

Therefore, it is imperative that guidelines mandating the management of L. lactis as a cell factory be put in place, especially for new strains, that conform to pre-marketing safety profiling and post-marketing follow-up to determine their acceptability [155]. Many lactococcal system developments have also incorporated food-grade markers in place of antibiotic resistance markers so as to maintain the GRAS status of L. lactis [156]. Alternatively, much consideration should be given on privileged aspects whereby recombinant L. lactis should be used. Examples include basis of delivered molecule, persistence of strain, robustness of the expression system, composition of different molecule subtypes and delivery to specific eukaryotic cells [157]. While its long history and safe use may be somewhat arguable, oftentimes, modifications to the final engineered product may bring about unexpected consequences [158], which also explains why only a few cell factories involving L. lactis have actually entered human trials.

When it comes to cancer vaccines, new knowledge and advancements in immunomodulation and microencapsulation technology of live lactococcal delivery vectors coupled with the richness of gut-associated lymphoid tissues (GALTs) have consequently opened up a gateway in exploiting future vaccination efforts via an oral-mucosal route, where we predict future research efforts being streamlined towards the lactococcal-based production of recombinant tumour antigens, especially against gastrointestinal malignancies over the next decade. In essence, this approach slingshots the practical use of peptide-based vaccines by overcoming its existing shortcomings such as its poor plasma stability and systemic half-life when administered in vivo.

Conclusions

Lactococcus lactis have come a long way from being a food bacterium to a microbial cell factory for the production of industrially important products with potentially great bio-economic value, especially in the medical field. In spite of its limitations, there is still much room for improvement of the lactococcal system as a microbial cell factory since its molecular toolbox is still relatively limited compared to those available for E. coli. An expansion of said toolbox would be akin to opening a Pandora’s box, thus allowing further potential especially in terms of genetic and metabolic engineering to overcome limitations highlighted above.

Notes

Abbreviations

MEP: 

2-C-methyl-d-erythritol-4-phosphate

4CL: 

4-coumarate-CoA ligase

ADH: 

alcohol dehydrogenase

ALS: 

alpha-acetolactate synthase

CEA: 

carcinoembryonic antigen

CTB: 

cholera toxin B

DSS: 

dextran sulfate sodium

EHEC: 

enterohemorrhagic Escherichia coli

ECM: 

extracellular matrix

FnbpA: 

fibronectin-binding protein A

FDA: 

Food and Drug Administration

GABA: 

gamma-amino butyric acid

GIT: 

gastrointestinal tract

GMO: 

genetically modified organism

GEM: 

gram-positive extracellular matrix

GRAS: 

generally regarded as safe

GAPDH: 

glyceraldehyde 3-phosphate dehydrogenase

GTP: 

guanosine triphosphate

GALT: 

gut-associated lymphoid tissue

Hsp: 

heat shock protein

HA: 

hemagglutinin

HN: 

hemagglutinin-neuraminidase

HIV: 

human immunodeficiency virus

IBV: 

infectious bronchitis virus

IBD: 

inflammatory bowel disease

IGF-I: 

insulin-like growth factor I

IFN: 

interferon

IL: 

interleukin

KDEL: 

Lys–Asp–Glu–Leu

KRAS: 

Kirsten rat sarcoma viral oncogene homolog

LDH: 

lactate dehydrogenase

LAB: 

lactic acid bacteria

LLO: 

listeriolysin O

LysM: 

lysine motif

MVA: 

mevalonate pathway

NOX: 

NADPH oxidase

NDV: 

Newcastle disease virus

NADH: 

nicotinamide adenine dinucleotide dehydrogenase

NICE: 

nisin-controlled gene expression

NP: 

nucleoprotein

PLA: 

polylactic acid

PCV: 

porcine circovirus

PDH: 

pyruvate dehydrogenase

PFL: 

pyruvate-formate-lyase

SE: 

secretion efficiency

SP: 

signal peptides

SOD: 

superoxide dismutase

Th: 

T-helper

TGF-β1: 

transforming growth factor beta 1

T1D: 

type-1 diabetes

Declarations

Authors’ contributions

AAS contributed to the review on cloning and expression systems, LILA contributed to the review on therapeutic and vaccine products, LSHE contributed to the review on industrial products and compounds, while RAR provided insights on challenges and future prospects of L. lactis. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets supporting the review are included within the article.

Funding

This study was supported by a grant from the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2014/SG05/UCSI/03/1) and the Ministry of Science Technology and Innovation (MOSTI) (02-02-22-SF0011).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia
(2)
Functional Food Research Group, Department of Biotechnology, Faculty of Applied Sciences, UCSI University
(3)
Perdana University-Royal College of Surgeons in Ireland, Perdana University
(4)
Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, University Putra Malaysia

References

  1. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001;11:731–53.View ArticleGoogle Scholar
  2. Parapouli M, Delbes-Paus C, Kakouri A, Koukkou AI, Montel MC, Samelis J. Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk. Appl Environ Microbiol. 2013;79:3476–84.View ArticleGoogle Scholar
  3. Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubiere P, Gruss A. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol. 2001;183:4509–16.View ArticleGoogle Scholar
  4. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol. 1997;179:5282–7.View ArticleGoogle Scholar
  5. Garcia-Fruitos E. Lactic acid bacteria: a promising alternative for recombinant protein production. Microb Cell Fact. 2012;11:157.View ArticleGoogle Scholar
  6. Linares DM, Kok J, Poolman B. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol. 2010;192:5805–12.View ArticleGoogle Scholar
  7. D’Souza R, Pandeya D, Hong S. Review: Lactococcus lactis: an efficient Gram positive cell factory for the production and secretion of recombinant protein. Biomed Res. 2012;23:1–7.Google Scholar
  8. Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA. Construction of a novel inducible expression vector for Lactococcus lactis M4 and Lactobacillus plantarum Pa21. Plasmid. 2014;74:32–8.View ArticleGoogle Scholar
  9. Zhu D, Liu F, Xu H, Bai Y, Zhang X, Saris PE, Qiao M. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8. FEMS Microbiol Lett. 2015;362:fnv107.View ArticleGoogle Scholar
  10. Llull D, Poquet I. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol. 2004;70:5398–406.View ArticleGoogle Scholar
  11. Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H. Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol. 1999;32:75–87.View ArticleGoogle Scholar
  12. Mu D, Montalban-Lopez M, Masuda Y, Kuipers OP. Zirex: a novel zinc-regulated expression system for Lactococcus lactis. Appl Environ Microbiol. 2013;79:4503–8.View ArticleGoogle Scholar
  13. Miyoshi A, Jamet E, Commissaire J, Renault P, Langella P, Azevedo V. A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol Lett. 2004;239:205–12.View ArticleGoogle Scholar
  14. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995;270:27299–304.View ArticleGoogle Scholar
  15. Kuipers O, de Ruyter P, Kleerebezem M, de Vos W. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol. 1998;64:15–21.View ArticleGoogle Scholar
  16. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 2005;68:705–17.View ArticleGoogle Scholar
  17. Berlec A, Strukelj B. Generating a custom TA-cloning expression plasmid for Lactococcus lactis. Biotechniques. 2012;52:51–3.View ArticleGoogle Scholar
  18. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, et al. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact. 2005;4:2.View ArticleGoogle Scholar
  19. Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008;14:48–58.View ArticleGoogle Scholar
  20. Schneewind O, Missiakas DM. Protein secretion and surface display in gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci. 2012;367:1123–39.View ArticleGoogle Scholar
  21. Sriraman K, Jayaraman G. HtrA is essential for efficient secretion of recombinant proteins by Lactococcus lactis. Appl Environ Microbiol. 2008;74:7442–6.View ArticleGoogle Scholar
  22. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol. 2000;35:1042–51.View ArticleGoogle Scholar
  23. Le Loir Y, Nouaille S, Commisaire J, Brétigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol. 2001;67:4119–27.View ArticleGoogle Scholar
  24. Ng DT, Sarkar CA. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis. Appl Environ Microbiol. 2013;79:347–56.View ArticleGoogle Scholar
  25. Baradaran A, Sieo CC, Foo HL, Illias RM, Yusoff K, Rahim RA. Cloning and in silico characterization of two signal peptides from Pediococcus pentosaceus and their function for the secretion of heterologous protein in Lactococcus lactis. Biotechnol Lett. 2013;35:235–8.View ArticleGoogle Scholar
  26. Subramaniam M, Baradaran A, Rosli MI, Rosfarizan M, Khatijah Y, Raha AR. Effect of signal peptides on the secretion of beta-cyclodextrin glucanotransferase in Lactococcus lactis NZ9000. J Mol Microbiol Biotechnol. 2012;22:361–72.View ArticleGoogle Scholar
  27. Lindholm A, Ellmen U, Tolonen-Martikainen M, Palva A. Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA. Appl Microbiol and Biotechnol. 2006;73:904–14.View ArticleGoogle Scholar
  28. Leenhouts K, Buist G, Kok J. Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek. 1999;76:367–76.View ArticleGoogle Scholar
  29. Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999;285:760–3.View ArticleGoogle Scholar
  30. Navarre WW, Schneewind O. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol. 1994;14:115–21.View ArticleGoogle Scholar
  31. Berlec A, Zadravec P, Jevnikar Z, Strukelj B. Identification of candidate carrier proteins for surface display on Lactococcus lactis by theoretical and experimental analyses of the surface proteome. Appl Environ Microbiol. 2011;77:1292–300.View ArticleGoogle Scholar
  32. Raha AR, Varma NR, Yusoff K, Ross E, Foo HL. Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol. 2005;68:75–81.View ArticleGoogle Scholar
  33. Baradaran A, Yusoff K, Shafee N, Rahim RA. Newcastle disease virus hemagglutinin neuraminidase as a potential cancer targeting agent. J Cancer. 2016;7:462–6.View ArticleGoogle Scholar
  34. Kalyanasundram J, Chia SL, Song AA, Raha AR, Young HA, Yusoff K. Surface display of glycosylated Tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol. 2015;15:113.View ArticleGoogle Scholar
  35. Audouy SA, van Roosmalen ML, Neef J, Kanninga R, Post E, van Deemter M, Metselaar H, van Selm S, Robillard GT, Leenhouts KJ, Hermans PW. Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine. 2006;24:5434–41.View ArticleGoogle Scholar
  36. Mao R, Zhou K, Han Z, Wang Y. Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Fact. 2016;15:80.View ArticleGoogle Scholar
  37. Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol. 1999;17:588–92.View ArticleGoogle Scholar
  38. Smit G, Smit BA, Engels WJ. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev. 2005;29:591–610.View ArticleGoogle Scholar
  39. Papagianni M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J. 2012;3:e201210003.View ArticleGoogle Scholar
  40. Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol. 1995;61:3967–71.Google Scholar
  41. Abbe K, Takahashi S, Yamada T. Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. J Bacteriol. 1982;152:175–82.Google Scholar
  42. Snoep JL, Teixeira de Mattos MJ, Starrenburg MJ, Hugenholtz J. Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol. 1992;174:4838–41.View ArticleGoogle Scholar
  43. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983;49:209–24.View ArticleGoogle Scholar
  44. Garcia-Quintans N, Repizo G, Martin M, Magni C, Lopez P. Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl Environ Microbiol. 2008;74:1988–96.View ArticleGoogle Scholar
  45. de Felipe FL, Kleerebezem M, de Vos W, Hugenholtz J. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol. 1998;180:3804–8.Google Scholar
  46. Hugenholtz J, Looijesteijn E, Starrenburg M, Dijkema C. Analysis of sugar metabolism in an EPS producing Lactococcus lactis by 31P NMR. J Biotechnol. 2000;77:17–23.View ArticleGoogle Scholar
  47. Andersen HW, Pedersen MB, Hammer K, Jensen PR. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur J Biochem. 2001;268:6379–89.View ArticleGoogle Scholar
  48. Hols P, Ramos A, Hugenholtz J, Delcour J, de Vos WM, Santos H, Kleerebezem M. Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance. J Bacteriol. 1999;181:5521–6.Google Scholar
  49. Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng. 2004;6:109–15.View ArticleGoogle Scholar
  50. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol. 2003;69:3069–76.View ArticleGoogle Scholar
  51. Sybesma W, Van Den Born E, Starrenburg M, Mierau I, Kleerebezem M, De Vos WM, Hugenholtz J. Controlled modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol. 2003;69:7101–7.View ArticleGoogle Scholar
  52. Unlu G, Nielsen B, Ionita C. Inhibition of Listeria monocytogenes in hot dogs by surface application of freeze-dried bacteriocin-containing powders from lactic acid bacteria. Probiot Antimicrob Proteins. 2016;8:102–10.View ArticleGoogle Scholar
  53. Bolocan AS, Pennone V, O’Connor PM, Coffey A, Nicolau AI, McAuliffe O, Jordan K. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate. J Appl Microbiol. 2017;122:279–93.View ArticleGoogle Scholar
  54. Cirkovic I, Bozic DD, Draganic V, Lozo J, Beric T, Kojic M, Arsic B, Garalejic E, Djukic S, Stankovic S. Licheniocin 50.2 and bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit biofilms of coagulase negative staphylococci and Listeria monocytogenes clinical isolates. PLoS ONE. 2016;11:e0167995.View ArticleGoogle Scholar
  55. Alkhatib Z, Abts A, Mavaro A, Schmitt L, Smits SH. Lantibiotics: how do producers become self-protected? J Biotechnol. 2012;159:145–54.View ArticleGoogle Scholar
  56. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol. 1998;64:439–45.Google Scholar
  57. Iwatani S, Ishibashi N, Flores FP, Zendo T, Nakayama J, Sonomoto K. LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5. FEMS Microbiol Lett. 2016;363:fnw200.View ArticleGoogle Scholar
  58. Miljkovic M, Uzelac G, Mirkovic N, Devescovi G, Diep DB, Venturi V, Kojic M. LsbB bacteriocin interacts with the third transmembrane domain of the YvjB receptor. Appl Environ Microbiol. 2016;82:5364–74.View ArticleGoogle Scholar
  59. Schnell N, Entian KD, Schneider U, Gotz F, Zahner H, Kellner R, Jung G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature. 1988;333:276–8.View ArticleGoogle Scholar
  60. Bodaszewska-Lubas M, Brzychczy-Wloch M, Gosiewski T, Heczko PB. Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins-pilot study. Postepy Hig Med Dosw. 2012;66:787–94.View ArticleGoogle Scholar
  61. Zhou XX, Li WF, Ma GX, Pan YJ. The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv. 2006;24:285–95.View ArticleGoogle Scholar
  62. Hernandez-Saldana OF, Valencia-Posadas M, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE. Bacteriocinogenic bacteria isolated from raw goat milk and goat cheese produced in the center of Mexico. Indian J Microbiol. 2016;56:301–8.View ArticleGoogle Scholar
  63. Liu J, Dantoft SH, Wurtz A, Jensen PR, Solem C. A novel cell factory for efficient production of ethanol from dairy waste. Biotechnol Biofuels. 2016;9:33.View ArticleGoogle Scholar
  64. Hernandez I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama Vlieg JE. Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol. 2007;73:1544–52.View ArticleGoogle Scholar
  65. Song AA, Abdullah JO, Abdullah MP, Shafee N, Rahim RA. Functional expression of an orchid fragrance gene in Lactococcus lactis. Int J Mol Sci. 2012;13:1582–97.View ArticleGoogle Scholar
  66. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan EF, Noor NM, Raha AR. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS ONE. 2012;7:e52444.View ArticleGoogle Scholar
  67. Rajendran V, Puvendran K, Guru BR, Jayaraman G. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis. J Sep Sci. 2016;39:655–62.View ArticleGoogle Scholar
  68. Geldart K, Borrero J, Kaznessis YN. Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Appl Environ Microbiol. 2015;81:3889–97.View ArticleGoogle Scholar
  69. Berlec A, Ravnikar M, Strukelj B. Lactic acid bacteria as oral delivery systems for biomolecules. Pharmazie. 2012;67:891–8.Google Scholar
  70. Gu W, Xia Q, Yao J, Fu S, Guo J, Hu X. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World J Microbiol Biotechnol. 2015;31:557–67.View ArticleGoogle Scholar
  71. Zhang XJ, Feng SY, Li ZT, Feng YM. Expression of Helicobacter pylori hspA gene in Lactococcus lactis NICE system and experimental study on its immunoreactivity. Gastroenterol Res Pract. 2015;2015:750932.Google Scholar
  72. Martinez-Cuesta MC, Gasson MJ, Narbad A. Heterologous expression of the plant coumarate: coA ligase in Lactococcus lactis. Lett Appl Microbiol. 2005;40:44–9.View ArticleGoogle Scholar
  73. Dong Z, Zhang J, Li H, Du G, Chen J, Lee B. Codon and propeptide optimizations to improve the food-grade expression of bile salt hydrolase in Lactococcus lactis. Protein Pept Lett. 2015;22:727–35.View ArticleGoogle Scholar
  74. Yang Y, Kang Z, Zhou J, Chen J, Du G. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol. 2015;99:301–8.View ArticleGoogle Scholar
  75. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352–5.View ArticleGoogle Scholar
  76. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:754–9.View ArticleGoogle Scholar
  77. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotechnol. 2003;21:785–9.View ArticleGoogle Scholar
  78. de Moreno de LeBlanc A, del Chatel S, Chatel JM, Miyoshi A, Azevedo V, Langella P, Bermudez-Humaran LG, LeBlanc JG. Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol Res Pract. 2015;2015:146972.View ArticleGoogle Scholar
  79. Frossard CP, Steidler L, Eigenmann PA. Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J Allergy Clin Immunol. 2007;119:952–9.View ArticleGoogle Scholar
  80. Wu C, Yang G, Bermudez-Humaran LG, Pang Q, Zeng Y, Wang J, Gao X. Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice. Int Immunopharmacol. 2006;6:610–5.View ArticleGoogle Scholar
  81. Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun. 2003;71:1887–96.View ArticleGoogle Scholar
  82. Bermudez-Humaran LG, Motta JP, Aubry C, Kharrat P, Rous-Martin L, Sallenave JM, Deraison C, Vergnolle N, Langella P. Serine protease inhibitors protect better than IL-10 and TGF-beta anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Fact. 2015;14:26.View ArticleGoogle Scholar
  83. Liu S, Li Y, Deng B, Xu Z. Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice. BMC Biotechnol. 2016;16:25.View ArticleGoogle Scholar
  84. Kim JI, Park TE, Maharjan S, Li HS, Lee HB, Kim IS, Piao D, Lee JY, Cho CS, Bok JD, et al. Soluble RANKL expression in Lactococcus lactis and investigation of its potential as an oral vaccine adjuvant. BMC Immunol. 2015;16:71.View ArticleGoogle Scholar
  85. Glenting J, Poulsen LK, Kato K, Madsen SM, Frokiaer H, Wendt C, Sorensen HW. Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis. Microb Cell Fact. 2007;6:28.View ArticleGoogle Scholar
  86. Daniel C, Repa A, Wild C, Pollak A, Pot B, Breiteneder H, Wiedermann U, Mercenier A. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy. 2006;61:812–9.View ArticleGoogle Scholar
  87. Zhang Q, Ai C. Development of house dust mite vaccine. Methods Mol Biol. 2016;1403:739–51.View ArticleGoogle Scholar
  88. Zhang B, Li A, Zuo F, Yu R, Zeng Z, Ma H, Chen S. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells. Microb Cell Fact. 2016;15:102.View ArticleGoogle Scholar
  89. Durmaz E, Hu Y, Aroian RV, Klaenhammer TR. Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic. Appl Environ Microbiol. 2016;82:1286–94.View ArticleGoogle Scholar
  90. Liu KF, Liu XR, Li GL, Lu SP, Jin L, Wu J. Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett. 2016;174:28–36.View ArticleGoogle Scholar
  91. Dhakal R, Bajpai VK, Baek KH. Production of gaba (gamma-aminobutyric acid) by microorganisms: a review. Braz J Microbiol. 2012;43:1230–41.View ArticleGoogle Scholar
  92. Schuller HM, Al-Wadei HA, Majidi M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer. 2008;112:767–78.View ArticleGoogle Scholar
  93. Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids. 2010;39:1107–16.View ArticleGoogle Scholar
  94. Nomura M, Kimoto H, Someya Y, Suzuki I. Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int J Syst Bacteriol. 1999;49(Pt 1):163–6.View ArticleGoogle Scholar
  95. Pouwels PH, Leer RJ, Shaw M, Heijne den Bak-Glashouwer MJ, Tielen FD, Smit E, Martinez B, Jore J, Conway PL. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int J Food Microbiol. 1998;41:155–67.View ArticleGoogle Scholar
  96. Norton PM, Brown HW, Wells JM, Macpherson AM, Wilson PW, Le Page RW. Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol. 1996;14:167–77.View ArticleGoogle Scholar
  97. Steidler L, Robinson K, Chamberlain L, Schofield KM, Remaut E, Le Page RW, Wells JM. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun. 1998;66:3183–9.Google Scholar
  98. Bahey-El-Din M, Gahan CG. Lactococcus lactis-based vaccines: current status and future perspectives. Hum Vaccines. 2011;7:106–9.View ArticleGoogle Scholar
  99. Bermudez-Humaran LG, Kharrat P, Chatel JM, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact. 2011;10(Suppl 1):S4.View ArticleGoogle Scholar
  100. Tarahomjoo S. Development of vaccine delivery vehicles based on lactic acid bacteria. Mol Biotechnol. 2012;51:183–99.View ArticleGoogle Scholar
  101. Bermudez-Humaran LG, Cortes-Perez NG, Lefevre F, Guimaraes V, Rabot S, Alcocer-Gonzalez JM, Gratadoux JJ, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, et al. A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol. 2005;175:7297–302.View ArticleGoogle Scholar
  102. Zhang X, Hu S, Du X, Li T, Han L, Kong J. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development. J Microbiol Immunol Infect. 2014.Google Scholar
  103. Freires IA, Aviles-Reyes A, Kitten T, Simpson-Haidaris PJ, Swartz M, Knight PA, Rosalen PL, Lemos JA, Abranches J. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence. Virulence. 2016;104:1–12.Google Scholar
  104. De Azevedo M, Santos Rocha C, Pereira V, De Junior AD, De Sousa CS, Azevedo V, LeBlanc JG, Chatel JM, Miyoshi A. Prospective uses of recombinant Lactococcus lactis expressing both listeriolysin O and mutated internalin A from Listeria monocytogenes as a tool for DNA vaccination. Genet Mol Res. 2015;14:18485–93.View ArticleGoogle Scholar
  105. Lei H, Peng X, Jiao H, Zhao D, Ouyang J. Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact. 2015;14:111.View ArticleGoogle Scholar
  106. Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X. Protective immunity against influenza H5N1 virus challenge in chickens by oral administration of recombinant Lactococcus lactis expressing neuraminidase. BMC Vet Res. 2015;11:85.View ArticleGoogle Scholar
  107. Lei H, Peng X, Ouyang J, Zhao D, Jiao H, Shu H, Ge X. Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets. Virus Res. 2015;196:56–9.View ArticleGoogle Scholar
  108. Lei H, Peng X, Shu H, Zhao D. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus. J Med Virol. 2015;87:39–44.View ArticleGoogle Scholar
  109. Lei H, Xu Y, Chen J, Wei X, Lam DM. Immunoprotection against influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules. Virology. 2010;407:319–24.View ArticleGoogle Scholar
  110. Lei H, Sheng Z, Ding Q, Chen J, Wei X, Lam DM, Xu Y. Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine Immunol. 2011;18:1046–51.View ArticleGoogle Scholar
  111. Joan SS, Pui-Fong J, Song AA, Chang LY, Yusoff K, AbuBakar S, Rahim RA. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice. Biotechnol Lett. 2016;38:793–9.View ArticleGoogle Scholar
  112. Reese KA, Lupfer C, Johnson RC, Mitev GM, Mullen VM, Geller BL, Pastey M. A novel lactococcal vaccine expressing a peptide from the M2 antigen of H5N2 highly pathogenic avian influenza A virus prolongs survival of vaccinated chickens. Vet Med Int. 2013;2013:316926.View ArticleGoogle Scholar
  113. Cao HP, Wang HN, Yang X, Zhang AY, Li X, Ding MD, Liu ST, Zhang ZK, Yang F. Lactococcus lactis anchoring avian infectious bronchitis virus multi-epitope peptide EpiC induced specific immune responses in chickens. Biosci Biotechnol Biochem. 2013;77:1499–504.View ArticleGoogle Scholar
  114. Kobierecka PA, Olech B, Ksiazek M, Derlatka K, Adamska I, Majewski PM, Jagusztyn-Krynicka EK, Wyszynska AK. Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis. Front Microbiol. 2016;7:165.Google Scholar
  115. Miyoshi A, Bermudez-Humaran LG, Ribeiro LA, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact. 2006;5:14.View ArticleGoogle Scholar
  116. Saez D, Fernandez P, Rivera A, Andrews E, Onate A. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu, Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine. 2012;30:1283–90.View ArticleGoogle Scholar
  117. Anuradha K, Foo HL, Mariana NS, Loh TC, Yusoff K, Hassan MD, Sasan H, Raha AR. Live recombinant Lactococcus lactis vaccine expressing aerolysin genes D1 and D4 for protection against Aeromonas hydrophila in tilapia (Oreochromis niloticus). J Appl Microbiol. 2010;109:1632–42.Google Scholar
  118. Kim D, Beck BR, Lee SM, Jeon J, Lee DW, Lee JI, Song SK. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2016;55:374–83.View ArticleGoogle Scholar
  119. De Azevedo M, Meijerink M, Taverne N, Pereira VB, LeBlanc JG, Azevedo V, Miyoshi A, Langella P, Wells JM, Chatel JM. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer. Vaccine. 2015;33:4807–12.View ArticleGoogle Scholar
  120. Almeida JF, Breyner NM, Mahi M, Ahmed B, Benbouziane B, Boas PC, Miyoshi A, Azevedo V, Langella P, Bermudez-Humaran LG, Chatel JM. Expression of fibronectin binding protein A (FnBPA) from Staphylococcus aureus at the cell surface of Lactococcus lactis improves its immunomodulatory properties when used as protein delivery vector. Vaccine. 2016;34:1312–8.View ArticleGoogle Scholar
  121. Mutalib N, Isa N, Alitheen N, Song A, Rahim R. IRES-incorporated lactococcal bicistronic vector for target gene expression in a eukaryotic system. Plasmid. 2014;73:26–33.View ArticleGoogle Scholar
  122. Yagnik B, Padh H, Desai P. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microb Infect. 2016;18:237–44.View ArticleGoogle Scholar
  123. Li HS, Piao DC, Jiang T, Bok JD, Cho CS, Lee YS, Kang SK, Choi YJ. Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization. Vaccine. 2015;33:1959–67.View ArticleGoogle Scholar
  124. Ma L, Qiao X, Tang L, Jiang Y, Cui W, Li Y. Expression and biological activity of porcine interleukin-18 in recombinant Lactococcus lactis. Sheng Wu Gong Cheng Xue Bao. 2014;30:1541–8.Google Scholar
  125. Huynh E, Li J. Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing. Appl Microbiol Biotechnol. 2015;99:4667–77.View ArticleGoogle Scholar
  126. Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, Suda Y, Sato T, Kitazawa H, Shimosato T. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microb Cell Fact. 2015;14:189.View ArticleGoogle Scholar
  127. Roeffen W, Theisen M, van de Vegte-Bolmer M, van Gemert G, Arens T, Andersen G, Christiansen M, Sevargave L, Singh SK, Kaviraj S, Sauerwein R. Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants. Malar J. 2015;14:443.View ArticleGoogle Scholar
  128. Heine SJ, Franco-Mahecha OL, Chen X, Choudhari S, Blackwelder WC, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice. Immunol Cell Biol. 2015;93:641–52.View ArticleGoogle Scholar
  129. Pereira VB, Saraiva TD, Souza BM, Zurita-Turk M, Azevedo MS, De Castro CP, Mancha-Agresti P, Dos Santos JS, Santos AC, Faria AM, et al. Development of a new DNA vaccine based on mycobacterial ESAT-6 antigen delivered by recombinant invasive Lactococcus lactis FnBPA+. Appl Microbiol Biotechnol. 2015;99:1817–26.View ArticleGoogle Scholar
  130. Kasarello K, Kwiatkowska-Patzer B, Lipkowski AW, Bardowski JK, Szczepankowska AK. Oral administration of Lactococcus lactis expressing synthetic genes of myelin antigens in decreasing experimental autoimmune encephalomyelitis in rats. Med Sci Monit. 2015;21:1587–97.View ArticleGoogle Scholar
  131. Robert S, Van Huynegem K, Gysemans C, Mathieu C, Rottiers P, Steidler L. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis. Benef Microbes. 2015;6:591–601.View ArticleGoogle Scholar
  132. Ahmed B, Loos M, Vanrompay D, Cox E. Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine. 2014;32:3909–16.View ArticleGoogle Scholar
  133. Li X, Xing Y, Guo L, Lv X, Song H, Xi T. Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathog Dis. 2014;72:78–86.View ArticleGoogle Scholar
  134. Chamcha V, Jones A, Quigley BR, Scott JR, Amara RR. Oral immunization with a recombinant Lactococcus lactis-expressing HIV-1 antigen on group A Streptococcus pilus induces strong mucosal immunity in the gut. J Immunol. 2015;195:5025–34.View ArticleGoogle Scholar
  135. Li PC, Qiao XW, Zheng QS, Hou JB. Immunogenicity and immunoprotection of porcine circovirus type 2 (PCV2) Cap protein displayed by Lactococcus lactis. Vaccine. 2016;34:696–702.View ArticleGoogle Scholar
  136. Samazan F, Rokbi B, Seguin D, Telles F, Gautier V, Richarme G, Chevret D, Varela PF, Velours C, Poquet I. Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact. 2015;14:104.View ArticleGoogle Scholar
  137. Veloso TR, Mancini S, Giddey M, Vouillamoz J, Que YA, Moreillon P, Entenza JM. Vaccination against Staphylococcus aureus experimental endocarditis using recombinant Lactococcus lactis expressing ClfA or FnbpA. Vaccine. 2015;33:3512–7.View ArticleGoogle Scholar
  138. Gao S, Li D, Liu Y, Zha E, Zhou T, Yue X. Oral immunization with recombinant hepatitis E virus antigen displayed on the Lactococcus lactis surface enhances ORF2-specific mucosal and systemic immune responses in mice. Int Immunopharmacol. 2015;24:140–5.View ArticleGoogle Scholar
  139. Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MA, Chang YF. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine. 2015;33:1586–95.View ArticleGoogle Scholar
  140. Lim SH, Jahanshiri F, Rahim RA, Sekawi Z, Yusoff K. Surface display of respiratory syncytial virus glycoproteins in Lactococcus lactis NZ9000. Lett Appl Microbiol. 2010;51:658–64.View ArticleGoogle Scholar
  141. Agarwal P, Khatri P, Billack B, Low WK, Shao J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31:3404–14.View ArticleGoogle Scholar
  142. Berlec A, Jevnikar Z, Majhenic AC, Rogelj I, Strukelj B. Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol. 2006;73:158–65.View ArticleGoogle Scholar
  143. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, Rahim RA. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production. FEMS Microbiol Lett. 2014;355:177–84.View ArticleGoogle Scholar
  144. Bakari S, André F, Seigneurin-Berny D, Delaforge M, Rolland N, Frelet-Barrand A. Lactococcus lactis: recent developments in functional expression of membrane proteins. In membrane proteins production for structural analysis. New York: Springer; 2014.Google Scholar
  145. Kunji ER, Slotboom DJ, Poolman B. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta. 2003;1610:97–108.View ArticleGoogle Scholar
  146. Bakari S, Lembrouk M, Sourd L, Ousalem F, Andre F, Orlowski S, Delaforge M, Frelet-Barrand A. Lactococcus lactis is an efficient expression system for mammalian membrane proteins involved in liver detoxification, CYP3A4, and MGST1. Mol Biotechnol. 2016;58:299–310.View ArticleGoogle Scholar
  147. Frelet-Barrand A, Boutigny S, Moyet L, Deniaud A, Seigneurin-Berny D, Salvi D, Bernaudat F, Richaud P, Pebay-Peyroula E, Joyard J, Rolland N. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS ONE. 2010;5:e8746.View ArticleGoogle Scholar
  148. Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, et al. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS ONE. 2011;6:e29191.View ArticleGoogle Scholar
  149. Xu Y, Kong J, Kong W. Improved membrane protein expression in Lactococcus lactis by fusion to Mistic. Microbiology. 2013;159:1002–9.View ArticleGoogle Scholar
  150. Kunji ER, Chan KW, Slotboom DJ, Floyd S, O’Connor R, Monne M. Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol. 2005;16:546–51.View ArticleGoogle Scholar
  151. Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl Environ Microbiol. 2002;68:5429–36.View ArticleGoogle Scholar
  152. Simoes-Barbosa A, Abreu H, Silva Neto A, Gruss A, Langella P. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl Microbiol Biotechnol. 2004;65:61–7.View ArticleGoogle Scholar
  153. Price CE, Zeyniyev A, Kuipers OP, Kok J. From meadows to milk to mucosa-adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev. 2012;36:949–71.View ArticleGoogle Scholar
  154. van Veen H, Putman M, Margolles A, Sakamoto K, Konings W. Structure-function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta. 1999;1461:201–6.View ArticleGoogle Scholar
  155. Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol. 2005;105:281–95.View ArticleGoogle Scholar
  156. Cotter PD, Hill C, Ross RP. A food-grade approach for functional analysis and modification of native plasmids in Lactococcus lactis. Appl Environ Microbiol. 2003;69:702–6.View ArticleGoogle Scholar
  157. Bermudez-Humaran LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P. Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol. 2013;16:278–83.View ArticleGoogle Scholar
  158. Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria. Biotechnol J. 2011;6:1147–61.View ArticleGoogle Scholar

Copyright

© The Author(s) 2017