Kell DB, Swainston N, Pir P, Oliver SG. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol. 2015;33:237–46.
Article
CAS
Google Scholar
Boyarskiy S, Tullman-Ercek D. Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr Opin Chem Biol. 2015;28:15–9.
Article
CAS
Google Scholar
Nieves LM, Panyon LA, Wang X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol. 2015;3:17.
Article
Google Scholar
Turner WJ, Dunlop MJ. Trade-offs in improving biofuel tolerance using combinations of efflux pumps. ACS Synth Biol. 2015;4:1056–63.
Article
CAS
Google Scholar
Hector RE, Qureshi N, Hughes SR, Cotta MA. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol. 2008;80:675–84.
Article
CAS
Google Scholar
Young E, Poucher A, Comer A, Bailey A, Alper H. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol. 2011;77:3311–9.
Article
CAS
Google Scholar
Ha SJ, Galazka JM, Joong OhE, Kordić V, Kim H, Jin YS, et al. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng. 2013;15:134–43.
Article
CAS
Google Scholar
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011;7:487.
Article
Google Scholar
Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, et al. Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol. 2014;80:5955–64.
Article
CAS
Google Scholar
Yu AQ, Pratomo Juwono NK, Foo JL, Leong SSJ, Chang MW. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng. 2016;34:36–43.
Article
CAS
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.
Article
CAS
Google Scholar
von Heijne G, Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988;174:671–8.
Article
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
Article
CAS
Google Scholar
Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature. 2007;450:663–9.
Article
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
Article
CAS
Google Scholar
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35.
Article
CAS
Google Scholar
Saier MH, Reddy VS, Tamang DG, Västermark A. The transporter classification database. Nucleic Acids Res. 2014;42:D251–8.
Article
CAS
Google Scholar
Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol. 1975;91:249–62.
Article
CAS
Google Scholar
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351:1192–5.
Article
CAS
Google Scholar
Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci AP, Brookman JL. Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Nutr Soc. 1996;55:913–26.
Article
CAS
Google Scholar
Wood TM, Wilson CA. Studies on the capacity of the cellulase of the anaerobic rumen fungus Piromonas communis P to degrade hydrogen bond-ordered cellulose. Appl Microbiol Biotechnol. 1995;43:572–8.
Article
CAS
Google Scholar
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90:1–17.
Article
CAS
Google Scholar
Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O’Malley MA. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng. 2014;111:1471–82.
Article
CAS
Google Scholar
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci. 2013;91:331–41.
Article
CAS
Google Scholar
Chaucheyras-Durand F, Ossa F. REVIEW: the rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof Anim Sci. 2014;30:1–12.
Google Scholar
Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA, Abdel-Wahab MA, et al. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78:1–237.
Article
Google Scholar
Sonnhammer EL, von Heijne G, Krogh A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol. 1998;6:175–82.
CAS
Google Scholar
Teunissen MJ, Op den Camp HJM. Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie Van Leeuwenhoek. 1993;63:63–76.
Article
CAS
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.
Article
CAS
Google Scholar
Theodoulou FL, Kerr ID. ABC transporter research: going strong 40 years on. Biochem Soc Trans. 2015;43:1033–40.
Article
CAS
Google Scholar
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.
Article
CAS
Google Scholar
Hubert P, Sawma P, Duneau J-P, Khao J, Hénin J, Bagnard D, et al. Single-spanning transmembrane domains in cell growth and cell-cell interactions. Cell Adh Migr. 2014;4:313–24.
Article
Google Scholar
Kemp G, Cymer F. Small membrane proteins - elucidating the function of the needle in the haystack. Biol Chem. 2014;395:1365–77.
Article
CAS
Google Scholar
Zviling M, Kochva U, Arkin IT. How important are transmembrane helices of bitopic membrane proteins? Biochim Biophys Acta. 2007;1768:387–92.
Article
CAS
Google Scholar
Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol. 2013;79:4620–34.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
Google Scholar
Almén MS, Nordström KJ, Fredriksson R, Schiöth HB. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009;7:50.
Article
CAS
Google Scholar
Wimley WC. Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci. 2002;11:301–12.
Article
CAS
Google Scholar
Bigelow HR, Petrey DS, Liu J, Przybylski D, Rost B. Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res. 2004;32:2566–77.
Article
CAS
Google Scholar
Beck M, Förster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science. 2004;306:1387–90.
Article
CAS
Google Scholar
Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA. 1980;77:1496–500.
Article
CAS
Google Scholar
Amm I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta. 2014;1843:182–96.
Article
CAS
Google Scholar
Wickner W, Schekman R. Membrane fusion. Nat Struct Mol Biol. 2008;15:658–64.
Article
CAS
Google Scholar
Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005;6:449–61.
Article
CAS
Google Scholar
Marvin-Sikkema FD, Pedro Gomes TM, Gottschal JC, Prins RA, Marvin-Sikkema FD. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol. 1993;160:388–96.
Article
CAS
Google Scholar
Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2014;100:3–17.
Article
CAS
Google Scholar
Becker T, Gebert M, Pfanner N, van der Laan M. Biogenesis of mitochondrial membrane proteins. Curr Opin Cell Biol. 2009;21:484–93.
Article
CAS
Google Scholar
Strittmatter P, Soll J, Bölter B. The chloroplast protein import machinery: a review. Methods Mol Biol. 2010;619:307–21.
Article
CAS
Google Scholar
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci. 2013;70:1393–411.
Article
CAS
Google Scholar
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int Rev Cell Mol Biol. 2015;320:171–233.
Article
Google Scholar
Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256:385–7.
Article
CAS
Google Scholar
Kaldenhoff R, Kai L, Uehlein N. Aquaporins and membrane diffusion of CO2 in living organisms. Biochim Biophys Acta. 2014;1840:1592–5.
Article
CAS
Google Scholar
Young EM, Comer AD, Huang H, Alper HS. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab Eng. 2012;14:401–11.
Article
CAS
Google Scholar
Young EM, Tong A, Bui H, Spofford C, Alper HS. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci USA. 2014;111:131–6.
Article
CAS
Google Scholar
Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci USA. 2014;111:5159–64.
Article
CAS
Google Scholar
Wang M, Yu C, Zhao H. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. Biotechnol Bioeng. 2015;113:484–91.
Article
CAS
Google Scholar
Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. Transport of sugars. Annu Rev Biochem. 2015;84:865–94.
Article
CAS
Google Scholar
Mishra NK, Chang J, Zhao PX, Fotiadis D. Prediction of membrane transport proteins and their substrate specificities using primary sequence information. PLoS ONE. 2014;9:e100278.
Article
CAS
Google Scholar
Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 2009;10:218–27.
Article
CAS
Google Scholar
ter Beek J, Guskov A, Slotboom DJ. Structural diversity of ABC transporters. J Gen Physiol. 2014;143:419–35.
Article
CAS
Google Scholar
van der Heide T, Poolman B. ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep. 2002;3:938–43.
Article
Google Scholar
Fukami-Kobayashi K, Tateno Y, Nishikawa K. Domain dislocation : a change of core structure in periplasmic binding proteins in their evolutionary history. J Mol Biol. 1999;286:279–90.
Article
CAS
Google Scholar
Berntsson RP, Smits SHJ, Schmitt L, Slotboom DJ, Poolman B. A structural classification of substrate-binding proteins. FEBS Lett. 2010;584:2606–17.
Article
CAS
Google Scholar
Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001;313:903–19.
Article
CAS
Google Scholar
Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–40.
CAS
Google Scholar
O’Hara PJ, Sheppard PO, Thøgersen H, Venezia D, Haldeman BA, McGrane V, et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993;11:41–52.
Article
Google Scholar
Felder CB, Graul RC, Lee AY, Merkle HP, Sadee W. The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci. 1999;1:E2.
Article
CAS
Google Scholar
Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature. 1998;395:913–7.
Article
CAS
Google Scholar
Spurlino JC, Lu GY, Quiocho FA. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem. 1991;266:5202–19.
CAS
Google Scholar
van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002;21:572–9.
Article
Google Scholar
Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, et al. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol. 2002;44:1441–54.
Article
CAS
Google Scholar
Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J. Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur J Biochem. 2002;269:3172–81.
Article
CAS
Google Scholar
Chen B, Ling H, Chang MW. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:21.
Article
CAS
Google Scholar
Frederix M, Hütter K, Leu J, Batth TS, Turner WJ, Rüegg TL, et al. Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS ONE. 2014;9:e101115.
Article
CAS
Google Scholar
Coleman JJ, Mylonakis E. Efflux in fungi: la pièce de résistance. PLoS Pathog. 2009;5:e1000486.
Article
CAS
Google Scholar
Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol. 2009;17:22–31.
Article
CAS
Google Scholar
Xu X, Chen J, Xu H, Li D. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genet Biol. 2014;69:75–83.
Article
CAS
Google Scholar
Costa C, Dias PJ, Sá-Correia I, Teixeira MC. MFS multidrug transporters in pathogenic fungi: do they have real clinical impact? Front Physiol. 2014;5:197.
Google Scholar
Pomorski T, Menon AK. Lipid flippases and their biological functions. Cell Mol Life Sci. 2006;63:2908–21.
Article
CAS
Google Scholar
Montigny C, Lyons J, Champeil P, Nissen P, Lenoir G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta. 2015;1861:767–83.
Article
CAS
Google Scholar
Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell. 2000;12:2441–54.
Article
Google Scholar
Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol. 2007;73:110–6.
Article
CAS
Google Scholar
Cyert MS, Philpott CC. Regulation of cation balance in Saccharomyces cerevisiae. Genetics. 2013;193:677–713.
Article
CAS
Google Scholar
Wang J, Zhang B, Zhang J, Wang H, Zhao M, Wang N, et al. Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgtA in Escherichia coli mutant. Bioresour Technol. 2014;170:125–31.
Article
CAS
Google Scholar
Duprey A, Chansavang V, Frémion F, Gonthier C, Louis Y, Lejeune P, et al. “NiCo Buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng. 2014;8:19.
Article
CAS
Google Scholar
Kim SK, Lee BS, Wilson DB, Kim EK. Selective cadmium accumulation using recombinant Escherichia coli. J Biosci Bioeng. 2005;99:109–14.
Article
CAS
Google Scholar
Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008;7:339–57.
Article
CAS
Google Scholar
Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256–72.
Article
CAS
Google Scholar
Kolakowski LF. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2:1–7.
CAS
Google Scholar
Louis JM, Ginsburg GT, Kimmel AR. The cAMP receptor CAR4 regulates axial patterning and cellular differentiation during late development of Dictyostelium. Genes Dev. 1994;8:2086–96.
Article
CAS
Google Scholar
Krishnan A, Almén MS, Fredriksson R, Schiöth HB. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE. 2012;7:e29817.
Article
CAS
Google Scholar
Pin JP, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther. 2003;98:325–54.
Article
CAS
Google Scholar
Liu X, He Q, Studholme DJ, Wu Q, Liang S, Yu L. NCD3G: a novel nine-cysteine domain in family 3 GPCRs. Trends Biochem Sci. 2004;29:458–61.
Article
CAS
Google Scholar
Marin-Rodriguez MC. Pectate lyases, cell wall degradation and fruit softening. J Exp Bot. 2002;53:2115–9.
Article
CAS
Google Scholar
Mayans O, Scott M, Connerton I, Gravesen T, Benen J, Visser J, et al. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure. 1997;5:677–89.
Article
CAS
Google Scholar
Jenkins J, Mayans O, Pickersgill R. Structure and evolution of parallel beta-helix proteins. J Struct Biol. 1998;122:236–46.
Article
CAS
Google Scholar
Davis CG. The many faces of epidermal growth factor repeats. New Biol. 1990;2:410–9.
CAS
Google Scholar
Bjarnadóttir TK, Fredriksson R, Schiöth HB. The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci. 2007;64:2104–19.
Article
CAS
Google Scholar
Zhang Z. A brief review on the evolution of GPCR: conservation and diversification. Open J Genet. 2012;2:11–7.
Article
CAS
Google Scholar
Zhang Z, Wu J, Xiao J, Zhang Z, Zhao Y, Jin Z, et al. Systematic study on G-protein couple receptor prototypes: did they really evolve from prokaryotic genes? IET Syst Biol. 2014;8:154–61.
Article
Google Scholar
Cao J, Huang S, Qian J, Huang J, Jin L, Su Z, et al. Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence. BMC Evol Biol. 2009;9:67.
Article
CAS
Google Scholar
Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004;338:1027–36.
Article
CAS
Google Scholar