Li J, Zhu Z: Research and development of next generation of antibody-based therapeutics.
Acta Pharmacol Sin 2010, 31:1198–1207.
Article
CAS
Google Scholar
Cuesta AM, Sainz-Pastor N, Bonet J, Oliva B, Alvarez-Vallina L: Multivalent antibodies: when design surpasses evolution.
Trends Biotechnol 2010, 28:355–362.
Article
CAS
Google Scholar
Fitzgerald J, Lugovskoy AA: Rational engineering of antibody therapeutics targeting multiple oncogene pathways.
MAbs 2011, 3:299–309.
Article
Google Scholar
Pack P, Plückthun A: Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli.
Biochemistry (Mosc) 1992, 31:1579–1584.
Article
CAS
Google Scholar
Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JYC, Shively JE, Wu AM: Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (Single-Chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts.
Cancer Res 1996, 56:3055–3061.
CAS
Google Scholar
Li S-L, Liang S-J, Guo N, Wu AM, Fujita-Yamaguchi Y: Single-chain antibodies against human insulin-like growth factor I receptor: expression, purification, and effect on tumor growth.
Cancer Immunol Immunother 2000, 49:243–252.
Article
CAS
Google Scholar
Asano R, Hagiwara Y, Koyama N, Masakari Y, Orimo R, Arai K, Ogata H, Furumoto S, Umetsu M, Kumagai I: Multimerization of anti-(epidermal growth factor receptor) IgG fragments induces an antitumor effect: the case for humanized 528 scFv multimers.
FEBS J 2013, 280:4816–4826.
Article
CAS
Google Scholar
Holliger P, Prospero T, Winter G: “Diabodies”: small bivalent and bispecific antibody fragments.
Proc Natl Acad Sci U S A 1993, 90:6444–6448.
Article
CAS
Google Scholar
Deyev SM, Lebedenko EN: Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design.
BioEssays News Rev Mol Cell Dev Biol 2008, 30:904–918.
Article
CAS
Google Scholar
Deyev SM, Waibel R, Lebedenko EN, Schubiger AP, Plückthun A: Design of multivalent complexes using the barnase · barstar module.
Nat Biotech 2003, 21:1486–1492.
Article
CAS
Google Scholar
Gopal GJ, Kumar A: Strategies for the production of recombinant protein in Escherichia coli.
Protein J 2013, 32:419–425.
Article
CAS
Google Scholar
Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M: Construction of human antibody gene libraries and selection of antibodies by phage display.
Methods Mol Biol 2014, 1060:215–243.
Article
Google Scholar
Butler M, Meneses-Acosta A: Recent advances in technology supporting biopharmaceutical production from mammalian cells.
Appl Microbiol Biotechnol 2012, 96:885–894.
Article
CAS
Google Scholar
Frenzel A, Hust M, Schirrmann T: Expression of recombinant antibodies.
Front Immunol 2013, 4:217.
Article
Google Scholar
Sánchez-Arevalo Lobo VJ, Cuesta AM, Sanz L, Compte M, García P, Prieto J, Blanco FJ, Alvarez-Vallina L: Enhanced antiangiogenic therapy with antibody-collagen XVIII NC1 domain fusion proteins engineered to exploit matrix remodeling events.
Int J Cancer 2006, 119:455–462.
Article
Google Scholar
Cuesta ÁM, Sánchez-Martín D, Sanz L, Bonet J, Compte M, Kremer L, Blanco FJ, Oliva B, Álvarez-Vallina L: In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.
PLoS ONE 2009, 4:e5381.
Article
Google Scholar
Cuesta AM, Sánchez-Martín D, Blanco-Toribio A, Villate M, Enciso-Álvarez K, Alvarez-Cienfuegos A, Sainz-Pastor N, Sanz L, Blanco FJ, Alvarez-Vallina L: Improved stability of multivalent antibodies containing the human collagen XV trimerization domain.
MAbs 2012, 4:226–232.
Article
Google Scholar
Blanco-Toribio A, Sainz-Pastor N, Álvarez-Cienfuegos A, Merino N, Cuesta ÁM, Sánchez-Martín D, Bonet J, Santos-Valle P, Sanz L, Oliva B, Blanco FJ, Álvarez-Vallina L: Generation and characterization of monospecific and bispecific hexavalent trimerbodies.
MAbs 2013, 5:70–79.
Article
Google Scholar
Cereghino JL, Cregg JM: Heterologous protein expression in the methylotrophic yeast Pichia pastoris.
FEMS Microbiol Rev 2000, 24:45–66.
Article
CAS
Google Scholar
Damasceno LM, Huang C-J, Batt CA: Protein secretion in Pichia pastoris and advances in protein production.
Appl Microbiol Biotechnol 2012, 93:31–39.
Article
Google Scholar
Gonçalves AM, Pedro AQ, Maia C, Sousa F, Queiroz JA, Passarinha LA: Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins.
J Microbiol Biotechnol 2013, 23:587–601.
Article
Google Scholar
Mattia A, Merker R: Regulation of probiotic substances as ingredients in foods: premarket approval or “generally recognized as safe” notification.
Clin Infect Dis Off Publ Infect Dis Soc Am 2008, 46(Suppl 2):S115–S118. discussion S144–151.
Article
Google Scholar
Ridder R, Schmitz R, Legay F, Gram H: Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris.
Biotechnol Nat Publ Co 1995, 13:255–260.
Article
CAS
Google Scholar
Wang Z, Duran-Struuck R, Crepeau R, Matar A, Hanekamp I, Srinivasan S, Neville DM, Sachs DH, Huang CA: Development of a diphtheria toxin based anti-porcine CD3 recombinant immunotoxin.
Bioconjug Chem 2011, 22:2014–2020.
Article
CAS
Google Scholar
FitzGerald K, Holliger P, Winter G: Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris.
Protein Eng 1997, 10:1221–1225.
Article
CAS
Google Scholar
Lange S, Schmitt J, Schmid RD: High-yield expression of the recombinant, atrazine-specific Fab fragment K411B by the methylotrophic yeast Pichia pastoris.
J Immunol Methods 2001, 255:103–114.
Article
CAS
Google Scholar
Lin S, Houston-Cummings NR, Prinz B, Moore R, Bobrowicz B, Davidson RC, Wildt S, Stadheim TA, Zha D: A novel fragment of antigen binding (Fab) surface display platform using glycoengineered Pichia pastoris.
J Immunol Methods 2012, 375:159–165.
Article
CAS
Google Scholar
Takahashi K, Yuuki T, Takai T, Ra C, Okumura K, Yokota T, Okumura Y: Production of humanized fab fragment against human high affinity IgE receptor in
Pichia pastoris
.
Biosci Biotechnol Biochem 2000, 64:2138–2144.
Article
CAS
Google Scholar
Schoonooghe S: Engineering and expression of bibody and tribody constructs in mammalian cells and in the yeast Pichia pastoris.
Methods Mol Biol Clifton NJ 2012, 899:157–175.
Article
CAS
Google Scholar
Liu J, Wei D, Qian F, Zhou Y, Wang J, Ma Y, Han Z: pPIC9-Fc: a vector system for the production of single-chain Fv-Fc fusions in Pichia pastoris as detection reagents in vitro.
J Biochem (Tokyo) 2003, 134:911–917.
Article
CAS
Google Scholar
Carreras-Sangrà N, Tomé-Amat J, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, Gavilanes JG, Lacadena J: Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin α-sarcin.
Protein Eng Des Sel PEDS 2012, 25:425–435.
Article
Google Scholar
Tomé-Amat J, Menéndez-Méndez A, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, Gavilanes JG, Lacadena J: Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells.
FEBS J 2012, 279:3022–3032.
Article
Google Scholar
Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’ Anjou M: Production of monoclonal antibodies by glycoengineered Pichia pastoris.
J Biotechnol 2009, 139:318–325.
Article
CAS
Google Scholar
Zhang N, Liu L, Dumitru CD, Cummings NRH, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, Mallem MR, Ou Y, Patel RN, Vo K, Wang H, Burnina I, Choi B-K, Huber H, Stadheim TA, Zha D: Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study.
MAbs 2011, 3:289–298.
Article
Google Scholar
Baghban R, Gargari SLM, Rajabibazl M, Nazarian S, Bakherad H: Camelid-derived heavy chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.
Biotechnol Appl Biochem 2014. doi:10.1002/bab.1226.
Google Scholar
Chauhan JS, Rao A, Raghava GPS: In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences.
PLoS ONE 2013, 8:e67008.
Article
CAS
Google Scholar
Bos IGA, de Bruin EC, Karuntu YA, Modderman PW, Eldering E, Hack CE: Recombinant human C1-inhibitor produced in Pichia pastoris has the same inhibitory capacity as plasma C1-inhibitor.
Biochim Biophys Acta 2003, 1648:75–83.
Article
CAS
Google Scholar
Lehmann A: Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery.
Expert Opin Biol Ther 2008, 8:1187–1199.
Article
CAS
Google Scholar
Hefta LJF, Chen F-S, Ronk M, Sauter SL, Sarin V, Oikawa S, Nakazato H, Hefta S, Shively JE: Expression of carcinoembryonic antigen and its predicted immunoglobulin-like domains in HeLa cells for epitope analysis.
Cancer Res 1992, 52:5647–5655.
CAS
Google Scholar
Compte M, Blanco B, Serrano F, Cuesta AM, Sanz L, Bernad A, Holliger P, Alvarez-Vallina L: Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA [times] anti-CD3 diabodies from lentivirally transduced human lymphocytes.
Cancer Gene Ther 2007, 14:380–388.
Article
CAS
Google Scholar