Lam FH, Hartner FS, Fink GR, Stephanopoulos G: Enhancing stress resistance and production phenotypes through transcriptome engineering. Methods Enzymol. 2010, 470: 509-532.
Article
CAS
Google Scholar
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G: Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006, 314: 1565-1568. 10.1126/science.1131969.
Article
CAS
Google Scholar
Yu H, Tyo K, Alper H, Klein-Marcuschamer D, Stephanopoulos G: A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors. Biotechnol Bioeng. 2008, 101: 788-796. 10.1002/bit.21947.
Article
CAS
Google Scholar
Klein-Marcuschamer D, Santos CN, Yu H, Stephanopoulos G: Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol. 2009, 75: 2705-2711. 10.1128/AEM.01888-08.
Article
CAS
Google Scholar
Lee JY, Yang KS, Jang SA, Sung BH, Kim SC: Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng. 2011, 108: 742-749. 10.1002/bit.22989.
Article
CAS
Google Scholar
Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D, et al: Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol. 2011, 80: 1561-1580. 10.1111/j.1365-2958.2011.07663.x.
Article
CAS
Google Scholar
Romeo T: Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol. 1998, 29: 1321-1330. 10.1046/j.1365-2958.1998.01021.x.
Article
CAS
Google Scholar
Timmermans J, Van Melderen L: Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci. 2010, 67: 2897-2908. 10.1007/s00018-010-0381-z.
Article
CAS
Google Scholar
Jonas K, Edwards AN, Ahmad I, Romeo T, Romling U, Melefors O: Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol. 2010, 12: 524-540. 10.1111/j.1462-2920.2009.02097.x.
Article
CAS
Google Scholar
Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P: CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol. 2007, 64: 1605-1620. 10.1111/j.1365-2958.2007.05765.x.
Article
CAS
Google Scholar
Tatarko M, Romeo T: Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol. 2001, 43: 26-32. 10.1007/s002840010255.
Article
CAS
Google Scholar
Yakandawala N, Romeo T, Friesen AD, Madhyastha S: Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol. 2008, 78: 283-291. 10.1007/s00253-007-1307-z.
Article
CAS
Google Scholar
Romeo T, Gong M: Genetic and physical mapping of the regulatory gene csrA on the Escherichia coli K-12 chromosome. J Bacteriol. 1993, 175: 5740-5741.
CAS
Google Scholar
Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM: Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol. 1993, 175: 4744-4755.
CAS
Google Scholar
Romeo T: Post-transcriptional regulation of bacterial carbohydrate metabolism: evidence that the gene product CsrA is a global mRNA decay factor. Res Microbiol. 1996, 147: 505-512. 10.1016/0923-2508(96)84004-6.
Article
CAS
Google Scholar
Shine J, Dalgarno L: The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA. 1974, 71: 1342-1346. 10.1073/pnas.71.4.1342.
Article
CAS
Google Scholar
Sabnis NA, Yang H, Romeo T: Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem. 1995, 270: 29096-29104. 10.1074/jbc.270.49.29096.
Article
CAS
Google Scholar
Timmermans J, Van Melderen L: Conditional essentiality of the csrA gene in Escherichia coli. J Bacteriol. 2009, 191: 1722-1724. 10.1128/JB.01573-08.
Article
CAS
Google Scholar
Liu MY, Gui G, Wei B, 3rd Preston JF, Oakford L, Yuksel U, Giedroc DP, Romeo T: The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997, 272: 17502-17510. 10.1074/jbc.272.28.17502.
Article
CAS
Google Scholar
Babitzke P, Romeo T: CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol. 2007, 10: 156-163. 10.1016/j.mib.2007.03.007.
Article
CAS
Google Scholar
Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T: A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol. 2003, 48: 657-670. 10.1046/j.1365-2958.2003.03459.x.
Article
CAS
Google Scholar
Gutierrez P, Li Y, Osborne MJ, Pomerantseva E, Liu Q, Gehring K: Solution structure of the carbon storage regulator protein CsrA from Escherichia coli. J Bacteriol. 2005, 187: 3496-3501. 10.1128/JB.187.10.3496-3501.2005.
Article
CAS
Google Scholar
Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P: CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol. 2002, 44: 1599-1610. 10.1046/j.1365-2958.2002.02982.x.
Article
CAS
Google Scholar
Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T: Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol. 2001, 40: 245-256. 10.1046/j.1365-2958.2001.02380.x.
Article
CAS
Google Scholar
Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, et al: MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res. 2010, 38: D396-400. 10.1093/nar/gkp919.
Article
CAS
Google Scholar
Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, et al: RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res. 2011, 39: D98-105. 10.1093/nar/gkq1110.
Article
CAS
Google Scholar
Quan JA, Schneider BL, Paulsen IT, Yamada M, Kredich NM, Saier MH: Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology. 2002, 148: 123-131.
Article
CAS
Google Scholar
Maloy SR, Nunn WD: Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol. 1982, 149: 173-180.
CAS
Google Scholar
Bond-Watts BB, Bellerose RJ, Chang MC: Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol. 2011, 7: 222-227. 10.1038/nchembio.537.
Article
CAS
Google Scholar
Ma SM, Garcia DE, Redding-Johanson AM, Friedland GD, Chan R, Batth TS, Haliburton JR, Chivian D, Keasling JD, Petzold CJ, et al: Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab Eng. 2011, 13: 588-597. 10.1016/j.ymben.2011.07.001.
Article
CAS
Google Scholar
Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Lee TS, Mukhopadhyay A, Petzold CJ: Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab Eng. 2011, 13: 194-203. 10.1016/j.ymben.2010.12.005.
Article
CAS
Google Scholar
Peralta-Yahya PP, Keasling JD: Advanced biofuel production in microbes. Biotechnol J. 2010, 5: 147-162. 10.1002/biot.200900220.
Article
CAS
Google Scholar
Clomburg JM, Gonzalez R: Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol. 2010, 86: 419-434. 10.1007/s00253-010-2446-1.
Article
CAS
Google Scholar
Zhu K, Zhang YM, Rock CO: Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J Biol Chem. 2009, 284: 34880-34888. 10.1074/jbc.M109.068239.
Article
CAS
Google Scholar
Xu Y, Heath RJ, Li Z, Rock CO, White SW: The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem. 2001, 276: 17373-17379. 10.1074/jbc.M100195200.
Article
CAS
Google Scholar
Olson MM, Templeton LJ, Suh W, Youderian P, Sariaslani FS, Gatenby AA, Van Dyk TK: Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains. Appl Microbiol Biotechnol. 2007, 74: 1031-1040. 10.1007/s00253-006-0746-2.
Article
CAS
Google Scholar
Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010, 463: 559-562. 10.1038/nature08721.
Article
CAS
Google Scholar
Jiang P, Cronan JE: Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action. J Bacteriol. 1994, 176: 2814-2821.
CAS
Google Scholar
Cho H, Cronan JE: Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis. J Biol Chem. 1995, 270: 4216-4219. 10.1074/jbc.270.9.4216.
Article
CAS
Google Scholar
Lu X, Vora H, Khosla C: Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng. 2008, 10: 333-339. 10.1016/j.ymben.2008.08.006.
Article
CAS
Google Scholar
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008, 10: 305-311. 10.1016/j.ymben.2007.08.003.
Article
CAS
Google Scholar
Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL: Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng. 2009, 11: 262-273. 10.1016/j.ymben.2009.05.003.
Article
CAS
Google Scholar
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003, 21: 796-802. 10.1038/nbt833.
Article
CAS
Google Scholar
Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T: The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol. 2008, 68: 1128-1148. 10.1111/j.1365-2958.2008.06229.x.
Article
CAS
Google Scholar
Chang DE, Smalley DJ, Conway T: Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol. 2002, 45: 289-306. 10.1046/j.1365-2958.2002.03001.x.
Article
CAS
Google Scholar
Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008, 451: 86-89. 10.1038/nature06450.
Article
CAS
Google Scholar
Weaver LM, Herrmann KM: Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Bacteriol. 1990, 172: 6581-6584.
CAS
Google Scholar
Lutke-Eversloh T, Stephanopoulos G: L-tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol. 2007, 75: 103-110. 10.1007/s00253-006-0792-9.
Article
Google Scholar
Schmidt M, Romer L, Strehle M, Scheibel T: Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett. 2007, 29: 1741-1744. 10.1007/s10529-007-9461-z.
Article
CAS
Google Scholar
Li MZ, Elledge SJ: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods. 2007, 4: 251-256. 10.1038/nmeth1010.
Article
CAS
Google Scholar
Neidhardt FC, Bloch PL, Smith DF: Culture medium for enterobacteria. J Bacteriol. 1974, 119: 736-747.
CAS
Google Scholar
Baker CS, Eory LA, Yakhnin H, Mercante J, Romeo T, Babitzke P: CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol. 2007, 189: 5472-5481. 10.1128/JB.00529-07.
Article
CAS
Google Scholar
Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P: CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol. 2003, 185: 4450-4460. 10.1128/JB.185.15.4450-4460.2003.
Article
CAS
Google Scholar
Jonas K, Edwards AN, Simm R, Romeo T, Romling U, Melefors O: The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol. 2008, 70: 236-257. 10.1111/j.1365-2958.2008.06411.x.
Article
CAS
Google Scholar
Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T: CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol. 2005, 56: 1648-1663. 10.1111/j.1365-2958.2005.04648.x.
Article
CAS
Google Scholar
Rivals I, Personnaz L, Taing L, Potier MC: Enrichment or depletion of a GO category within a class of genes: which test?. Bioinformatics. 2007, 23: 401-407. 10.1093/bioinformatics/btl633.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995, 57: 289-300.
Google Scholar
Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, et al: EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. 2011, 39: D583-590. 10.1093/nar/gkq1143.
Article
CAS
Google Scholar