Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P: The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek. 1999, 76: 159-184. 10.1023/A:1002089722581.
Article
CAS
Google Scholar
Bernard E, Rolain T, Courtin P, Guillot A, Langella P, Hols P, et al: Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem. 2011, 286: 23950-23958. 10.1074/jbc.M111.241414.
Article
CAS
Google Scholar
Vollmer W, Blanot D, de Pedro MA: Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008, 32: 149-167. 10.1111/j.1574-6976.2007.00094.x.
Article
CAS
Google Scholar
Smith TJ, Blackman SA, Foster SJ: Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology. 2000, 146 (Pt 2): 249-262.
Article
CAS
Google Scholar
Vollmer W, Joris B, Charlier P, Foster S: Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 2008, 32: 259-286. 10.1111/j.1574-6976.2007.00099.x.
Article
CAS
Google Scholar
Layec S, Decaris B, Leblond-Bourget N: Diversity of Firmicutes peptidoglycan hydrolases and specificities of those involved in daughter cell separation. Res Microbiol. 2008, 159: 507-515. 10.1016/j.resmic.2008.06.008.
Article
CAS
Google Scholar
Kleerebezem M, Vaughan EE: Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol. 2009, 63: 269-290. 10.1146/annurev.micro.091208.073341.
Article
CAS
Google Scholar
Remus DM, Kleerebezem M, Bron PA: An intimate tete-a-tete - how probiotic lactobacilli communicate with the host. Eur J Pharmacol. 2011, 668 (Suppl 1): S33-S42.
Article
CAS
Google Scholar
van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ, et al: Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A. 2009, 106: 2371-2376. 10.1073/pnas.0809919106.
Article
CAS
Google Scholar
Bron PA, van Baarlen P, Kleerebezem M: Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012, 10: 66-78.
CAS
Google Scholar
Claes IJ, Schoofs G, Regulski K, Courtin P, Chapot-Chartier MP, Rolain T, et al: Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG. PLoS One. 2012, 7: e31588-10.1371/journal.pone.0031588.
Article
CAS
Google Scholar
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, et al: The extracellular biology of the lactobacilli. FEMS Microbiol Rev. 2010, 34: 199-230. 10.1111/j.1574-6976.2009.00208.x.
Article
CAS
Google Scholar
Macho FE, Pot B, Grangette C: Beneficial effect of probiotics in IBD: Are peptidogycan and NOD2 the molecular key effectors?. Gut Microbes. 2011, 2: 280-286. 10.4161/gmic.2.5.18255.
Article
Google Scholar
Macho FE, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al: Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011, 60: 1050-1059. 10.1136/gut.2010.232918.
Article
Google Scholar
Yan F, Polk DB: Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 2012, 3: 25-28. 10.4161/gmic.19245.
Article
Google Scholar
Boekhorst J, Wels M, Kleerebezem M, Siezen RJ: The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology. 2006, 152: 3175-3183. 10.1099/mic.0.29217-0.
Article
CAS
Google Scholar
Kleerebezem M, Boekhorst J, van Kraneburg R, Molenaar D, Kuipers OP, Leer R, et al: Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A. 2003, 100: 1990-1995. 10.1073/pnas.0337704100.
Article
CAS
Google Scholar
Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, Kleerebezem M, et al: Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol. 2012, 194: 195-196. 10.1128/JB.06275-11.
Article
CAS
Google Scholar
Fredriksen L, Mathiesen G, Moen A, Bron PA, Kleerebezem M, Eijsink VG, et al: The major autolysin Acm2 from Lactobacillus plantarum undergoes cytoplasmic O-glycosylation. J Bacteriol. 2012, 194: 325-333. 10.1128/JB.06314-11.
Article
CAS
Google Scholar
Palumbo E, Deghorain M, Cocconcelli PS, Kleerebezem M, Geyer A, Hartung T, et al: D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol. 2006, 188: 3709-3715. 10.1128/JB.188.10.3709-3715.2006.
Article
CAS
Google Scholar
Lebeer S, Claes IJ, Balog CI, Schoofs G, Verhoeven TL, Nys K, et al: The major secreted protein Msp1/p75 is O-glycosylated in Lactobacillus rhamnosus GG. Microb Cell Fact. 2012, 11: 15-10.1186/1475-2859-11-15.
Article
CAS
Google Scholar
Regulski K, Courtin P, Meyrand M, Claes IJ, Lebeer S, Vanderleyden J, et al: Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major gamma-D-Glutamyl-L-Lysyl-endopeptidase. PLoS One. 2012, 7: e32301-10.1371/journal.pone.0032301.
Article
CAS
Google Scholar
Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, et al: Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem. 2006, 281: 40041-40048. 10.1074/jbc.M606263200.
Article
CAS
Google Scholar
Pavan S, Hols P, Delcour J, Geoffroy MC, Grangette C, Kleerebezem M, et al: Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol. 2000, 66: 4427-4432. 10.1128/AEM.66.10.4427-4432.2000.
Article
CAS
Google Scholar
Sambrook J, Fritsch E, Maniatis T: Molecular cloning: a laboratory manual. 1989, New York, NY, USA: Cold Spring Harbour Laboratory Press, 2
Google Scholar
Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988, 16: 6127-6145. 10.1093/nar/16.13.6127.
Article
CAS
Google Scholar
Holo H, Nes IF: High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol. 1989, 55: 3119-3123.
CAS
Google Scholar
Ferain T, Hobbs JN, Richardson J, Bernard N, Garmyn D, Hols P, et al: Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J Bacteriol. 1996, 178: 5431-5437.
CAS
Google Scholar
Lambert JM, Bongers RS, Kleerebezem M: Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol. 2007, 73: 1126-1135. 10.1128/AEM.01473-06.
Article
CAS
Google Scholar
de Ruyter PG, Kuipers OP, de Vos WM: Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol. 1996, 62: 3662-3667.
CAS
Google Scholar
Bernard E, Rolain T, Courtin P, Hols P, Chapot-Chartier MP: Identification of the amidotransferase AsnB1 as being responsible for meso-diaminopimelic acid amidation in Lactobacillus plantarum peptidoglycan. J Bacteriol. 2011, 193: 6323-6330. 10.1128/JB.05060-11.
Article
CAS
Google Scholar
Courtin P, Miranda G, Guillot A, Wessner F, Mezange C, Domakova E, et al: Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an L,D-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol. 2006, 188: 5293-5298. 10.1128/JB.00285-06.
Article
CAS
Google Scholar
Cornett JB, Shockman GD: Cellular lysis of Streptococcus faecalis induced with triton X-100. J Bacteriol. 1978, 135: 153-160.
CAS
Google Scholar
Huard C, Miranda G, Wessner F, Bolotin A, Hansen J, Foster SJ, et al: Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. Microbiology. 2003, 149: 695-705. 10.1099/mic.0.25875-0.
Article
CAS
Google Scholar
Bron PA, Wels M, Bongers RS, van Bokhorst V, de Veen H, Wiersma A, Overmars L, et al: Transcriptomes reveal genetic signatures underlying physiological variations imposed by different fermentation conditions in Lactobacillus plantarum. PLoS One. 2012, 7: e38720-10.1371/journal.pone.0038720.
Article
CAS
Google Scholar
Huard C, Miranda G, Redko Y, Wessner F, Foster SJ, Chapot-Chartier MP: Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis: identification of a third N-acetylglucosaminidase, AcmC. Appl Environ Microbiol. 2004, 70: 3493-3499. 10.1128/AEM.70.6.3493-3499.2004.
Article
CAS
Google Scholar
Bernardo D, Sanchez B, Al-Hassi HO, Mann ER, Urdaci MC, Knight SC, et al: Microbiota/Host crosstalk biomarkers: regulatory response of human intestinal dendritic cells exposed to lactobacillus extracellular encrypted Peptide. PLoS One. 2012, 7: e36262-10.1371/journal.pone.0036262.
Article
CAS
Google Scholar
Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson IM, Tarkowski A, et al: Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus. J Bacteriol. 2007, 189: 7316-7325. 10.1128/JB.00734-07.
Article
CAS
Google Scholar
Steen A, Buist G, Horsburgh GJ, Venema G, Kuipers OP, Foster SJ, et al: AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J. 2005, 272: 2854-2868. 10.1111/j.1742-4658.2005.04706.x.
Article
CAS
Google Scholar
Redko Y, Courtin P, Mezange C, Huard C, Chapot-Chartier MP: Lactococcus lactis gene yjgB encodes a gamma-D-glutaminyl-L-lysyl-endopeptidase which hydrolyzes peptidoglycan. Appl Environ Microbiol. 2007, 73: 5825-5831. 10.1128/AEM.00705-07.
Article
CAS
Google Scholar
Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, et al: Structure of the gamma-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-gamma-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010, 66: 1354-1364. 10.1107/S1744309110021214.
Article
CAS
Google Scholar
Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H, Sekiguchi J: Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng. 2004, 98: 174-181.
Article
CAS
Google Scholar
Frankel MB, Hendrickx AP, Missiakas DM, Schneewind O: LytN, a murein hydrolase in the cross-wall compartment of Staphylococcus aureus, is involved in proper bacterial growth and envelope assembly. J Biol Chem. 2011, 286: 32593-32605. 10.1074/jbc.M111.258863.
Article
CAS
Google Scholar
Ng WL, Kazmierczak KM, Winkler ME: Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol. 2004, 53: 1161-1175. 10.1111/j.1365-2958.2004.04196.x.
Article
CAS
Google Scholar
Sham LT, Barendt SM, Kopecky KE, Winkler ME: Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A. 2011, 108: E1061-E1069. 10.1073/pnas.1108323108.
Article
Google Scholar
Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, et al: Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact. 2007, 6: 29-10.1186/1475-2859-6-29.
Article
Google Scholar
Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985, 33: 103-119. 10.1016/0378-1119(85)90120-9.
Article
CAS
Google Scholar
Kuipers OP, de Ruyter PG, Kleerebezem M, de Vos WM: Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 1997, 15: 135-140. 10.1016/S0167-7799(97)01029-9.
Article
CAS
Google Scholar