Löser C, Urit T, Bley T. Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol. 2014;98:5397–415.
Article
PubMed
Google Scholar
Kam S-K, Kim J-K, Lee M-G. Removal characteristics of mixed gas of ethyl acetate and 2-butanol by a biofilter packed with Jeju scoria. Korean J Chem Eng. 2011;28:1019–22.
Article
CAS
Google Scholar
Chan W-C, Su M-Q. Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter. Bioresour Technol. 2008;99:8016–21.
Article
CAS
PubMed
Google Scholar
GVR. Ethyl Acetate Market Size, Share & Trends Analysis Report By End Use (Food & Beverages, Pharmaceutical, Automotive, Artificial Leather, Packaging), By Region, And Segment Forecasts, 2021–2028. 2021.
Fischer E, Speier A. Darstellung der Ester. Berichte der Dtsch Chem Gesellschaft. 1895;28:3252–8.
Article
CAS
Google Scholar
Liu Y, Lotero E, Goodwin JG. Effect of water on sulfuric acid catalyzed esterification. J Mol Catal A Chem. 2006;245:132–40.
Article
CAS
Google Scholar
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, et al. Microbial production of short and medium chain esters: enzymes, pathways, and applications. Biotechnol Adv. 2019;37:107407.
Article
CAS
PubMed
Google Scholar
Löser C, Urit T, Stukert A, Bley T. Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J Biotechnol. 2013;163:17–23.
Article
PubMed
Google Scholar
Minetoki T, Bogaki T, Iwamatsu A, Fujii T, Hamachi M. The purification, properties and internal peptide sequences of alcohol acetyltransferase isolated from Saccharomyces cerevisiae Kyokai No 7. Biosci Biotechnol Biochem. 1993;57:2094–8.
Article
CAS
PubMed
Google Scholar
Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Garcés Daza F, Ellena V, et al. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng. 2017;41:92–101.
Article
CAS
PubMed
Google Scholar
Bohnenkamp AC, Kruis AJ, Mars AE, Wijffels RH, van der Oost J, Kengen SWM, et al. Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli. Biotechnol Biofuels. 2020;13:65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horton CE, Bennett GN. Ester production in E. coli and C. acetobutylicum. Enzyme Microb Technol. 2006;38:937–43.
Article
CAS
Google Scholar
Wang Q, Al Makishah NH, Li Q, Li Y, Liu W, Sun X-M, et al. Developing clostridia as cell factories for short- and medium-chain ester production. Front Bioeng Biotechnol. 2021;9:386.
Google Scholar
Feng J, Zhang J, Ma Y, Feng Y, Wang SS, Guo N, et al. Renewable fatty acid ester production in Clostridium. Nat Commun. 2021;12:1–13.
Article
Google Scholar
Redl S, Diender M, Jensen TØ, Sousa DZ, Nielsen AT. Exploiting the potential of gas fermentation. Ind Crops Prod. 2017;106:21–30.
Article
CAS
Google Scholar
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, et al. Stepping on the gas to a circular economy: accelerating development of carbon-negative chemical production from gas fermentation. Annu Rev Chem Biomol Eng. 2021;12:439–70.
Article
PubMed
Google Scholar
Köpke M, Simpson SD. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr Opin Biotechnol. 2020;65:180–9.
Article
PubMed
Google Scholar
Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta - Proteins Proteomics. 2008;1784:1873–98.
Article
CAS
Google Scholar
Wood HG. Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 1991;5:156–63.
Article
CAS
PubMed
Google Scholar
Diender M, Stams AJM, Sousa DZ. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol. 2015;6:1–18.
Article
Google Scholar
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng. 2022;71:117–41.
Article
CAS
PubMed
Google Scholar
Woods C, Humphreys CM, Rodrigues RM, Ingle P, Rowe P, Henstra AM, et al. A novel conjugal donor strain for improved DNA transfer into Clostridium spp. Anaerobe. 2019;59:184–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heap JT, Pennington OJ, Cartman ST, Minton NP. A modular system for Clostridium shuttle plasmids. J Microbiol Methods. 2009;78:79–85.
Article
CAS
PubMed
Google Scholar
Cañadas IC, Groothuis D, Zygouropoulou M, Rodrigues R, Minton NP. RiboCas: a universal CRISPR-based editing tool for Clostridium. ACS Synth Biol. 2019. https://doi.org/10.1021/acssynbio.9b00075.
Article
PubMed
Google Scholar
Patinios C, Creutzburg SCA, Arifah AQ, Adiego-Pérez B, Gyimah EA, Ingham CJ, et al. Streamlined CRISPR genome engineering in wild-type bacteria using SIBR-Cas. Nucleic Acids Res. 2021;49:11392–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claassens NJ, Siliakus MF, Spaans SK, Creutzburg SCA, Nijsse B, Schaap PJ, et al. Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS One. 2017;12:e0184355.
Article
PubMed
PubMed Central
Google Scholar
Köpke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol. 2014;80:3394–403.
Article
PubMed
PubMed Central
Google Scholar
Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng. 2017;40:104–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol. 2016;5:1355–61.
Article
CAS
PubMed
Google Scholar
Kruis AJ, Bohnenkamp AC, Nap B, Nielsen J, Mars AE, Wijffels RH, et al. From eat to treat: engineering the mitochondrial eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. Biotechnol Biofuels BioMed Central. 2020;13:1–10.
Google Scholar
Patinios C, Lanza L, Corino I, Franssen MCR, Van der Oost J, Weusthuis RA, et al. Eat1-like alcohol acyl transferases from yeasts have high alcoholysis and thiolysis activity. Front Microbiol. 2020;11:1.
Article
Google Scholar
Rodriguez GM, Tashiro Y, Atsumi S. Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol. 2014;10:259–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nancolas B, Bull ID, Stenner R, Dufour V, Curnow P. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast. 2017;34:239–51.
Article
CAS
PubMed
Google Scholar
Seo H, Lee JW, Giannone RJ, Dunlap NJ, Trinh CT. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis. Metab Eng. 2021;66:179–90.
Article
CAS
PubMed
Google Scholar
Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, et al. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol. 2016;7:1–15.
Article
Google Scholar
Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Flüchter S, Öztürk H, et al. Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng Elsevier. 2016;36:37–47.
Article
CAS
Google Scholar
Malcrops P, Dufour J-P. Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae. Eur J Biochem. 1992;210:1015–22.
Article
Google Scholar
Valgepea K, de Souza PLR, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, et al. Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst. 2017;4:505-515.e5.
Article
CAS
PubMed
Google Scholar
Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA, Heggestad JT, et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat Chem Biol. 2020;16:912–9.
Article
CAS
PubMed
Google Scholar
Vögeli B, Schulz L, Garg S, Tarasava K, Clomburg JM, Lee SH, et al. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nat Commun. 2022;13:3058.
Article
PubMed
PubMed Central
Google Scholar
Kruis AJ, Mars AE, Kengen SWM, Borst JW, van der Oost J, Weusthuis RA. Alcohol Acetyltransferase Eat1 Is Located in Yeast Mitochondria. Appl Environ Microbiol. 2018;84:1–11.
Article
Google Scholar
Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155:268–78.
Article
CAS
PubMed
Google Scholar
Verstrepen KJ, Van Laere SDM, Vercammen J, Derdelinckx G, Dufour J-P, Pretorius IS, et al. The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast. 2004;21:367–77.
Article
CAS
PubMed
Google Scholar
Lin J-L, Wheeldon I. Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae. PLoS ONE. 2014;9:e104141.
Article
PubMed
PubMed Central
Google Scholar
Zhu J, Lin J-L, Palomec L, Wheeldon I. Microbial host selection affects intracellular localization and activity of alcohol-O-acetyltransferase. Microb Cell Fact. 2015;14:35.
Article
PubMed
PubMed Central
Google Scholar
Slonczewski JL, Rosen BP, Alger JR, Macnab RM. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci. 1981;78:6271–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Forsberg CW, Gibbins LN. Influence of external pH and fermentation products on Clostridium acetobutylicum Intracellular pH and cellular distribution of fermentation products. Appl Environ Microbiol. 1986;51:1230–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terracciano JS, Kashket ER. Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol. 1986;52:86–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mock J, Zheng Y, Mueller AP, Ly S, Tran L, Segovia S, et al. Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol. 2015;197:2965–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akita O, Suzuki S, Obata T, Hara S. Purification and some properties of alcohol acetyltransferase from sake Yeast. Agric Biol Chem. 1990;54:1485–90.
CAS
Google Scholar
Mordaka PM, Heap JT. Stringency of synthetic promoter sequences in clostridium revealed and circumvented by tuning promoter library mutation rates. ACS Synth Biol. 2018;7:672–81.
Article
CAS
PubMed
Google Scholar
Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci. 2010;107:13087–92.
Article
PubMed
PubMed Central
Google Scholar
Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol. 2014;80:2410–6.
Article
PubMed
PubMed Central
Google Scholar
Dürre P. Butanol formation from gaseous substrates. FEMS Microbiol Lett. 2016;363:fnw040.
Article
PubMed
Google Scholar
Liou JSC, Balkwill DL, Drake GR, Tanner RS. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol. 2005;55:2085–91.
Article
CAS
PubMed
Google Scholar
Lauer I, Philipps G, Jennewein S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO2 and H2. Microb Cell Fact. 2022;21:85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weitz S, Hermann M, Linder S, Bengelsdorf FR, Takors R, Dürre P. Isobutanol production by autotrophic acetogenic bacteria. Front Bioeng Biotechnol. 2021;9:1–12.
Article
Google Scholar
Jia D, He M, Tian Y, Shen S, Zhu X, Wang Y, et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synth Biol. 2021;10:2628–38.
Article
CAS
PubMed
Google Scholar
Liew FE, Nogle R, Abdalla T, Rasor BJ, Canter C, Jensen RO, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol. 2022;40:335–44.
Article
CAS
PubMed
Google Scholar
Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol. 2014;12:809–21.
Article
CAS
PubMed
Google Scholar
Bertsch J, Müller V. Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol biofuels. BioMed Central. 2015;8:210.
Google Scholar
Molitor B, Marcellin E, Angenent LT. Overcoming the energetic limitations of syngas fermentation. Curr Opin Chem Biol. 2017;41:84–92.
Article
CAS
PubMed
Google Scholar
Katsyv A, Müller V. Overcoming energetic barriers in acetogenic C1 conversion. Front Bioeng Biotechnol. 2020;8:1–23.
Article
Google Scholar