Zhong J-J, Xiao J-H. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. In: Zhong J-J, Bai F-W, Zhang W, editors. Biotechnology in China I: from bioreaction to bioseparation and bioremediation. Berlin: Springer; 2009. p. 79–150.
Chapter
Google Scholar
Cui BK, Tang LP, Dai YC. Morphological and molecular evidences for a new species of Lignosus (polyporales, basidiomycota) from tropical China. Mycol Prog. 2011;10:267–71.
Article
Google Scholar
Huang NL. Identification of the scientific name of hurulingzhi. Acta Edulis Fungi. 1999;6:32–4.
Google Scholar
Núñez M, Ryvarden L. East Asian polypores 2. Polyporaceae s. lato. Syn Fungorum. 2001;14:170–522.
Google Scholar
Lau BF, Abdullah N, Aminudin N, Lee HB, Tan PJ. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tiger׳s milk mushrooms) in Malaysia—a review. J Ethnopharmacol. 2015;169:441–58.
Article
CAS
Google Scholar
Yap HY, Chooi YH, Firdaus-Raih M, Fung SY, Ng ST, Tan CS, Tan NH. The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties. BMC Genomics. 2014;15:635.
Article
Google Scholar
Yap H-YY, Chooi Y-H, Fung S-Y, Arun S-T, Tan C-S, Tan N-H. Transcriptome analysis revealed highly expressed genes encoding secondary metabolite pathways and small cysteine-rich proteins in the sclerotium of Lignosus rhinocerotis. PLoS ONE. 2015;10:e0143549.
Article
Google Scholar
Yap HY, Fung SY, Ng ST, Tan CS, Tan NH. Genome-based proteomic analysis of Lignosus rhinocerotis (Cooke) Ryvarden sclerotium. Int J Med Sci. 2015;12:23–31.
Article
Google Scholar
Yap HY, Fung SY, Ng ST, Tan CS, Tan NH. Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol. 2015;174:437–51.
Article
CAS
Google Scholar
Quin MB, Flynn CM, Schmidt-Dannert C. Traversing the fungal terpenome. Nat Prod Rep. 2014;31:1449–73.
Article
CAS
Google Scholar
Schüffler A, Anke T. Secondary metabolites of basidiomycetes. In: Anke T, Weber D, editors. Physiology and genetics, vol. 15. Berlin: Springer; 2009. p. 209–31.
Chapter
Google Scholar
Wawrzyn GT, Quin MB, Choudhary S, Lopez-Gallego F, Schmidt-Dannert C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem Biol. 2012;19:772–83.
Article
CAS
Google Scholar
Moule Y, Moreau S, Bousquet JF. Relationships between the chemical structure and the biological properties of some eremophilane compounds related to PR toxin. Chem Biol Interact. 1977;17:185–92.
Article
CAS
Google Scholar
Agger S, Lopez-Gallego F, Schmidt-Dannert C. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol. 2009;72:1181–95.
Article
CAS
Google Scholar
Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913.
Article
Google Scholar
Lu MY, Fan WL, Wang WF, Chen T, Tang YC, Chu FH, Chang TT, Wang SY, Li MY, Chen YH, et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc Natl Acad Sci. 2014;111:E4743–52.
Article
Google Scholar
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–9.
Article
CAS
Google Scholar
Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Nat Prod Rep. 2013;30:1139–49.
Article
CAS
Google Scholar
Mattanovich D, Sauer M, Gasser B. Yeast biotechnology: teaching the old dog new tricks. Microb Cell Fact. 2014;13:34.
Article
Google Scholar
Tan CS, Ng ST, Vikineswary S, Lo FP, Tee CS. Genetic markers for identification of a Malaysian medicinal mushroom, Lignosus rhinocerus (Cendawan Susu Rimau). Acta Horti. 2010;859:161–7.
Article
CAS
Google Scholar
Cota-Sánchez JH, Remarchuk K, Ubayasena K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep. 2006;24:161–7.
Article
Google Scholar
Jones EW. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 1991;194:428–53.
Article
CAS
Google Scholar
Chooi YH, Krill C, Barrow RA, Chen S, Trengove R, Oliver RP, Solomon PS. An in planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum. Appl Environ Microbiol. 2015;81:177–86.
Article
Google Scholar
Lee KM, DaSilva NA. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast. 2005;22:431–40.
Article
CAS
Google Scholar
Lin HC, Chooi YH, Dhingra S, Xu W, Calvo AM, Tang Y. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of beta-trans-bergamotene. J Am Chem Soc. 2013;135:4616–9.
Article
CAS
Google Scholar
Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 2005;42:757–71.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–5.
Article
CAS
Google Scholar
Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–20.
Article
CAS
Google Scholar
Van Eijk GW, Roeijmans HJ, Verwiel PEJ. Isolation and identification of the sesquiterpenoid (+)-torreyol from Xylobolus frustulatus. Exp Mycol. 1984;8:273–5.
Article
Google Scholar
Salmoun M, Braekman JC, Ranarivelo Y, Rasamoelisendra R, Ralambomanana D, Dewelle J, Darro F, Kiss R. New calamenene sesquiterpenes from Tarenna madagascariensis. Nat Prod Res. 2007;21:111–20.
Article
CAS
Google Scholar
Krasnoslobodtseva OY, Valeev FA, Shitikova OV, Tolstikov GA. Inhibition of intramolecular reactions of (+)-δ-cadinol. Russ J Org Chem. 2006;42:1321–4.
Article
CAS
Google Scholar
Borg-Karlson A-K, Norin T, Talvitie A. Configurations and conformations of torreyol (δ-cadinol), α-cadinol, T-muurolol and T-cadinol. Tetrahedron. 1981;37:425–30.
Article
CAS
Google Scholar
Ainsworth AM, Rayner ADM, Broxholme SJ, Beeching JR, Pryke JA, Scard PR, Berriman J, Powell KA, Floyd AJ, Branch SK. Production and properties of the sesquiterpene, (+)-torreyol, in degenerative mycelial interactions between strains of Stereum. Mycol Res. 1990;94:799–809.
Article
CAS
Google Scholar
Chang S-T, Wang S-Y, Wu C-L, Chen P-F, Kuo Y-H. Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung. 2000;54:241–5.
CAS
Google Scholar
Su YC, Ho CL. Composition, in vitro anticancer, and antimicrobial activities of the leaf essential oil of Machilus mushaensis from Taiwan. Nat Prod Commun. 2013;8:273–5.
CAS
Google Scholar
Ali NA, Wursterb M, Denkert A, Arnold N, Fadail I, Al-Didamony G, Lindequist U, Wessjohann L, Setzer WN. Chemical composition, antimicrobial, antioxidant and cytotoxic activity of essential oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen. Nat Prod Commun. 2012;7:1099–102.
CAS
Google Scholar
Boik J. Natural compounds in cancer therapy. Princeton: Oregon Medical Press; 2001.
Google Scholar
Barriuso J, Nguyen DT, Li JW, Roberts JN, MacNevin G, Chaytor JL, Marcus SL, Vederas JC, Ro DK. Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. J Am Chem Soc. 2011;133:8078–81.
Article
CAS
Google Scholar
Lin HC, Tsunematsu Y, Dhingra S, Xu W, Fukutomi M, Chooi YH, Cane DE, Calvo AM, Watanabe K, Tang Y. Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J Am Chem Soc. 2014;136:4426–36.
Article
CAS
Google Scholar
Chooi YH, Hong YJ, Cacho RA, Tantillo DJ, Tang Y. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis. J Am Chem Soc. 2013;135:16805–8.
Article
CAS
Google Scholar
Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:117.
Article
CAS
Google Scholar
Yoshihara K, Ohta Y, Sakai T, Hirose Y. Germacrene D, a key intermediate of cadinene group compounds and bourbonenes. Tetrahedron Lett. 1969;10:2263–4.
Article
Google Scholar
Bülow N, König WA. The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry. 2000;55:141–68.
Article
Google Scholar
Salleh WM, Ahmad F, Yen KH. Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae). Arch Pharm Res. 2015;38:485–93.
Article
CAS
Google Scholar
Wei G, Kong L, Zhang J, Ma C, Wu X, Li X, Jiang H. Essential oil composition and antibacterial activity of Lindera nacusua (D. Don) Merr. Nat Prod Res. 2016;30:2704–6.
Article
CAS
Google Scholar
Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 2016;115:1807–16.
Article
Google Scholar
Westfelt L. (−)-Torreyol (“delta-Cadinol”. Acta Chem Scand. 1970;24:1618–22.
Article
CAS
Google Scholar
Nair M, Anchel M. Metabolic products of Clitocybe illuden. X. (+)-torreyol. Lloydia. 1973;36:106.
CAS
Google Scholar
Lee ML, Tan NH, Fung SY, Tan CS, Ng ST. The antiproliferative activity of sclerotia of Lignosus rhinocerus (Tiger Milk Mushroom). Evid Based Complement Alternat Med. 2012;2012:697603. doi:10.1155/2012/697603.
CAS
Google Scholar
Pushparajah V, Fatima A, Chong CH, Gambule TZ, Chan CJ, Ng ST, Tan CS, Fung SY, Lee SS, Tan NH, Lim RL. Characterisation of a new fungal immunomodulatory protein from Tiger Milk mushroom, Lignosus rhinocerotis. Sci Rep. 2016;6:30010.
Article
CAS
Google Scholar