OECD (Organization for Economic Cooperation and Development). Biotechnology for clean industrial products and processes: Towards industrial sustainability. Paris: OECD Publishing; 1998.
Google Scholar
OECD (Organization for Economic Cooperation and Development). The application of biotechnology to industrial sustainability. Paris: OECD Publishing; 2001.
Google Scholar
Katchalski-Katzir E, Kraemer DM. Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym. 2000;10:157–76.
Article
CAS
Google Scholar
Pierre A. The sol-gel encapsulation of enzymes. Biocatal Biotransform. 2004;22:145–70.
Article
CAS
Google Scholar
Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol. 2004;35:126–39.
Article
CAS
Google Scholar
Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv Synth Catal. 2007;349:1289–307.
Article
CAS
Google Scholar
Hanefeld U, Gardossi L, Magner E. Understanding enzyme immobilisation. Chem Soc Rev. 2009;38:453–68.
Article
CAS
Google Scholar
Tran DN, Balkus KJ Jr. Perspective of recent progress in immobilization of enzymes. ACS Catal. 2011;1:956–68.
Article
CAS
Google Scholar
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 2011;353:2885–904.
Article
CAS
Google Scholar
Sheldon RA. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol. 2011;92:467–77.
Article
CAS
Google Scholar
Yiu HH, Keane MA. Enzyme–magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol. 2012;87:583–94.
Article
CAS
Google Scholar
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42:6223–35.
Article
CAS
Google Scholar
Sührer I, Langemann T, Lubitz W, Weuster-Botz D, Castiglione K. A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb Cell Fact. 2015;14:1.
Article
Google Scholar
Romero PA, Arnold FH. Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol. 2009;10:866–76.
Article
CAS
Google Scholar
Farinas ET, Bulter T, Arnold FH. Directed enzyme evolution. Curr Opin Biotechnol. 2001;12:545–51.
Article
CAS
Google Scholar
Arnold FH, Wintrode PL, Miyazaki K, Gershenson A. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci. 2001;26:100–6.
Article
CAS
Google Scholar
Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J. Rational stabilization of complex proteins: a divide and combine approach. Sci Rep. 2015;5:9129.
Article
Google Scholar
Jemli S, Ayadi-Zouari D, Hlima HB, Bejar S. Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol. 2014;36:246–58.
Article
Google Scholar
Eijsink VG, Bjørk A, Gåseidnes S, Sirevåg R, Synstad B, van den Burg B, Vriend G. Rational engineering of enzyme stability. J Biotechnol. 2004;113:105–20.
Article
CAS
Google Scholar
Eijsink VG, Gåseidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. Biomol Eng. 2005;22:21–30.
Article
CAS
Google Scholar
Koudelakova T, Chaloupkova R, Brezovsky J, Prokop Z, Sebestova E, Hesseler M, Khabiri M, Plevaka M, Kulik D, Kuta Smatanova I. Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel. Angew Chem Int Ed Engl. 2013;52:1959–63.
Article
CAS
Google Scholar
Zentgraf B, Ringpfeil M, Martinek K, Mozhaev V, Ahern T. Practical importance of enzyme stability-I: natural sources of more stable enzymes; II: increase of enzyme stability by immobilization and treatment with low molecular weight reagents; III: increase of enzyme stability by protein engineering. Pure Appl Chem. 1991;63:1527–40.
Article
Google Scholar
Novak MJ, Pattammattel A, Koshmerl B, Puglia M, Williams C, Kumar CV. “Stable-on-the-Table” enzymes: engineering the enzyme-graphene oxide interface for unprecedented kinetic stability of the biocatalyst. ACS Catalysis. 2015;6:339–47.
Article
Google Scholar
Suplatov D, Panin N, Kirilin E, Shcherbakova T, Kudryavtsev P, Švedas V. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase’s adaptation to alkaline conditions. Plos ONE. 2014;9:e100643.
Article
Google Scholar
Emond S, Socha RD, Tokuriki N. Strategies to overcome stability constraints in enzyme evolution and facilitate effective enzyme engineering. In: Grunwald P, editor. Industrial Biocatalysis. Singapore: Pan Stanford Publishing Pte Ltd; 2014. p. 115–59.
Google Scholar
Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb Cell Fact. 2008;7:1.
Article
Google Scholar
Kavšček M, Stražar M, Curk T, Natter K, Petrovič U. Yeast as a cell factory: current state and perspectives. Microb Cell Fact. 2015;14:1.
Article
Google Scholar
Zhao H, van der Donk WA. Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol. 2003;14:583–9.
Article
CAS
Google Scholar
de Carvalho C, da Fonseca MMR. Bacterial whole cell biotransformations: in vivo reactions under in vitro conditions. Dyn Biochem Process Biotechnol Mol Biol. 2007;1:32–9.
Google Scholar
Nielsen J, Larsson C, van Maris A, Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol. 2013;24:398–404.
Article
CAS
Google Scholar
Bao T, Zhang X, Rao Z, Zhao X, Zhang R, Yang T, Xu Z, Yang S. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2, 3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. Plos ONE. 2014;9:e102951.
Article
Google Scholar
Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl Microbiol Biotechnol. 2006;72:514–20.
Article
CAS
Google Scholar
Zhou YJ, Yang W, Wang L, Zhu Z, Zhang S, Zhao ZK. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact. 2013;12:1.
Article
Google Scholar
Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol. 2001;55:590–5.
Article
CAS
Google Scholar
Woodley JM. Microbial biocatalytic processes and their development. Adv Appl Microbiol. 2006;60:1–16.
Article
CAS
Google Scholar
Straathof AJ, Panke S, Schmid A. The production of fine chemicals by biotransformations. Curr Opin Biotechnol. 2002;13:548–56.
Article
CAS
Google Scholar
Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001;409:258–68.
Article
CAS
Google Scholar
Kuhn D, Blank LM, Schmid A, Bühler B. Systems biotechnology—rational whole-cell biocatalyst and bioprocess design. Eng Life Sci. 2010;10:384–97.
Article
CAS
Google Scholar
Milner SE, Maguire AR. Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Arkivoc. 2012;1:321–82.
Google Scholar
Leon R, Fernandes P, Pinheiro H, Cabral J. Whole-cell biocatalysis in organic media. Enzym Microb Technol. 1998;23:483–500.
Article
CAS
Google Scholar
Wu H, Yang MY, Lai FR, Li XF. Toxicity of organic solvents to microbial cells with catalytic activity. Mod Food Sci Technol. 2014;4:004.
Google Scholar
Duetz WA, Van Beilen JB, Witholt B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol. 2001;12:419–25.
Article
CAS
Google Scholar
Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM. Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzym Microb Technol. 2003;32:347–55.
Article
CAS
Google Scholar
Ishige T, Honda K, Shimizu S. Whole organism biocatalysis. Curr Opin Chem Biol. 2005;9:174–80.
Article
CAS
Google Scholar
Johannes T, Simurdiak MR, Zhao H. Biocatalysis. In: Encyclopedia of Chemical Processing; 2006. pp. 101–110.
Stoodley P, Sauer K, Davies D, Costerton JW. Biofilms as complex differentiated communities. Ann Rev Microbiol. 2002;56:187–209.
Article
CAS
Google Scholar
Webb JS, Givskov M, Kjelleberg S. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol. 2003;6:578–85.
Article
CAS
Google Scholar
Beloin C, Da Re S, Ghigo JM. Colonization of abiotic surfaces. EcoSal Plus. 2005. doi:10.1128/ecosalplus.8.3.1.3.
Google Scholar
Kierek-Pearson K, Karatan E. Biofilm development in bacteria. Adv Appl Microbiol. 2005;57:79–111.
Article
CAS
Google Scholar
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Ann Rev Microbiol. 1995;49:711–45.
Article
CAS
Google Scholar
Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6:199–210.
Article
CAS
Google Scholar
Henriques ID, Love NG. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 2007;41:4177–85.
Article
CAS
Google Scholar
Pal A, Paul A. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol. 2008;48:49–64.
Article
CAS
Google Scholar
Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5:928–38.
Article
CAS
Google Scholar
Fang HH, Xu L-C, Chan K-Y. Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res. 2002;36:4709–16.
Article
CAS
Google Scholar
Halan B, Schmid A, Buehler K. Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol. 2011;77:1563–71.
Article
CAS
Google Scholar
Manolov T, Kristina H, Benoit G. Continuous acetonitrile degradation in a packed-bed bioreactor. Appl Microbiol Biotechnol. 2005;66:567–74.
CAS
Google Scholar
Hall E. Biofilm reactors in anaerobic wastewater treatment. Biotechnol Adv. 1987;5:257–69.
Article
CAS
Google Scholar
Meyer A, Wallis F. Development of microbial biofilms on various surfaces for the treatment of heavy metal containing effluents. Biotechnol Tech. 1997;11:859–63.
Article
CAS
Google Scholar
Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact. 2005;4:1.
Article
Google Scholar
Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006;14:389–97.
Article
CAS
Google Scholar
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 2009;27:636–43.
Article
CAS
Google Scholar
Cheng K-C, Demirci A, Catchmark JM. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol. 2010;87:445–56.
Article
CAS
Google Scholar
Gross R, Lang K, Bühler K, Schmid A. Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng. 2010;105:705–17.
CAS
Google Scholar
Tsoligkas AN, Winn M, Bowen J, Overton TW, Simmons MJ, Goss RJ. Engineering biofilms for biocatalysis. Chembiochem. 2011;12:1391–5.
Article
CAS
Google Scholar
Halan B, Letzel T, Schmid A, Buehler K. Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J. 2014;9:1339–49.
Article
CAS
Google Scholar
Gross R, Buehler K, Schmid A. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng. 2013;110:424–36.
Article
CAS
Google Scholar
Halan B, Schmid A, Buehler K. Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol Bioeng. 2010;106:516–27.
Article
CAS
Google Scholar
Gross R, Hauer B, Otto K, Schmid A. Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng. 2007;98:1123–34.
Article
CAS
Google Scholar
Perni S, Hackett L, Goss RJ, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express. 2013;3:66.
Article
Google Scholar
Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol. 1998;180:2442–9.
CAS
Google Scholar
Tsoligkas AN, Bowen J, Winn M, Goss RJ, Overton TW, Simmons MJ. Characterisation of spin coated engineered Escherichia coli biofilms using atomic force microscopy. Colloids Surf B Biointerfaces. 2012;89:152–60.
Article
CAS
Google Scholar
Kawasaki H, Bauerle R, Zon G, Ahmed S, Miles E. Site-specific mutagenesis of the alpha subunit of tryptophan synthase from Salmonella typhimurium. Changing arginine 179 to leucine alters the reciprocal transmission of substrate-induced conformational changes between the alpha and beta 2 subunits. J Biol Chem. 1987;262:10678–83.
CAS
Google Scholar
Zhang G, Neubert TA. Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol Biol. 2009;527:79–92.
Article
CAS
Google Scholar
Ong S-E, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc. 2006;1:2650–60.
Article
CAS
Google Scholar
Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol Cell Proteomics. 2005;4:857–72.
Article
CAS
Google Scholar
Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res. 2008;8:104–12.
Article
Google Scholar
Soufi B, Macek B. Stable isotope labeling by amino acids applied to bacterial cell culture. Methods Mol Biol. 2014;1188:9–22.
Article
Google Scholar
Cottrell JS, London U. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.
Article
Google Scholar
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2011;39:D32–7.
Article
CAS
Google Scholar
Ping L, Zhang H, Zhai L, Dammer EB, Duong DM, Li N, Yan Z, Wu J, Xu P. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli. J Proteome Res. 2013;12:5978–88.
Article
CAS
Google Scholar
Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1:2856–60.
Article
CAS
Google Scholar
Li XZ, Webb JS, Kjelleberg S, Rosche B. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. Appl Environ Microbiol. 2006;72:1639–44.
Article
CAS
Google Scholar