Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F et al (2013) Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 31:140–153
Article
CAS
Google Scholar
Garcia-Fruitos E (2012) Lactic acid bacteria: a promising alternative for recombinant protein production. Microb Cell Fact 11:157
Article
CAS
Google Scholar
Lee SY, Mattanovich D, Villaverde A (2012) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156
Article
CAS
Google Scholar
Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58
Article
CAS
Google Scholar
Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG et al (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4:2
Article
Google Scholar
Sevastsyanovich YR, Alfasi SN, Cole JA (2010) Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnol Appl Biochem 55:9–28
Article
CAS
Google Scholar
Casalta E, Montel MC (2008) Safety assessment of dairy microorganisms: the Lactococcus genus. Int J Food Microbiol 126:271–273
Article
CAS
Google Scholar
Chen RH, Huang CJ, Newton BS, Ritter G, Old LJ, Batt CA (2009) Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Protein Expr Purif 64:76–81
Article
CAS
Google Scholar
van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G (1990) Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95:155–160
Article
Google Scholar
Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051
Article
CAS
Google Scholar
Llull D, Poquet I (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol 70:5398–5406
Article
CAS
Google Scholar
Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H (1999) Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32:75–87
Article
CAS
Google Scholar
Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717
Article
CAS
Google Scholar
Ng DT, Sarkar CA (2013) Engineering signal peptides for enhanced protein secretion from Lactococcus lactis. Appl Environ Microbiol 79:347–356
Article
CAS
Google Scholar
Ravn P, Arnau J, Madsen SM, Vrang A, Israelsen H (2003) Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149:2193–2201
Article
CAS
Google Scholar
Glenting J, Poulsen LK, Kato K, Madsen SM, Frokiaer H, Wendt C et al (2007) Production of recombinant peanut allergen Ara h 2 using Lactococcus lactis. Microb Cell Fact 6:28
Article
Google Scholar
Bermudez-Humaran LG, Langella P, Commissaire J, Gilbert S, Le Loir Y, L’Haridon R et al (2003) Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224:307–313
Article
CAS
Google Scholar
Neef J, Koedijk DG, Bosma T, van Dijl JM, Buist G (2014) Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain. Appl Microbiol Biotechnol 98:10131–10141
Article
CAS
Google Scholar
Llull D, Son O, Blanie S, Briffotaux J, Morello E, Rogniaux H et al (2011) Lactococcus lactis ZitR is a zinc responsive repressor active in low, non-toxic zinc concentrations in vivo. J Bacteriol 193:1919–1929
Article
CAS
Google Scholar
Poquet I, Ehrlich SD, Gruss A (1998) An export-specific reporter designed for Gram-positive bacteria: application to Lactococcus lactis. J Bacteriol 180:1904–1912
CAS
Google Scholar
Tremillon N, Issaly N, Mozo J, Duvignau T, Ginisty H, Devic E et al (2010) Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor. Microb Cell Fact 9:37
Article
Google Scholar
Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E et al (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146
Article
CAS
Google Scholar
Rigoulay C, Poquet I, Madsen SM, Gruss A (2004) Expression of the Staphylococcus aureus surface proteins HtrA1 and HtrA2 in Lactococcus lactis. FEMS Microbiol Lett 237:279–288
CAS
Google Scholar
Tremillon N, Morello E, Llull D, Mazmouz R, Gratadoux JJ, Guillot A et al (2012) PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS One 7:e33516
Article
CAS
Google Scholar
Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162
Article
CAS
Google Scholar
Hansen G, Hilgenfeld R (2013) Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 70:761–775
Article
CAS
Google Scholar
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M (2011) Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65:149–168
Article
CAS
Google Scholar
Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
CAS
Google Scholar
Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696
CAS
Google Scholar
Johnson K, Charles I, Dougan G, Pickard D, O’Gaora P, Costa G et al (1991) The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5:401–407
Article
CAS
Google Scholar
Ingmer H, Brondsted L (2009) Proteases in bacterial pathogenesis. Res Microbiol 160:704–710
Article
CAS
Google Scholar
Foucaud-Scheunemann C, Poquet I (2003) HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS Microbiol Lett 224:53–59
Article
CAS
Google Scholar
Chitlaru T, Zaide G, Ehrlich S, Inbar I, Cohen O, Shafferman A (2011) HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 81:1542–1559
Article
CAS
Google Scholar
Boehm M, Hoy B, Rohde M, Tegtmeyer N, Baek KT, Oyarzabal OA et al (2012) Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathog 4:3
Article
CAS
Google Scholar
Hoy B, Geppert T, Boehm M, Reisen F, Plattner P, Gadermaier G et al (2012) Distinct roles of secreted HtrA proteases from Gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. J Biol Chem 287:10115–10120
Article
CAS
Google Scholar
Hoy B, Lower M, Weydig C, Carra G, Tegtmeyer N, Geppert T et al (2010) Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11:798–804
Article
CAS
Google Scholar
Okuda J, Hayashi N, Tanabe S, Minagawa S, Gotoh N (2011) Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa. J Infect Chemother 17:782–792
Article
CAS
Google Scholar
Lower M, Weydig C, Metzler D, Reuter A, Starzinski-Powitz A, Wessler S et al (2008) Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS One 3:e3510
Article
Google Scholar
Lewis C, Skovierova H, Rowley G, Rezuchova B, Homerova D, Stevenson A et al (2009) Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology 155:873–881
Article
CAS
Google Scholar
Baud C, Hodak H, Willery E, Drobecq H, Locht C, Jamin M et al (2009) Role of DegP for two-partner secretion in Bordetella. Mol Microbiol 74:315–329
Article
CAS
Google Scholar
Baek KT, Vegge CS, Brondsted L (2011) HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni. Gut Pathog 3:13
Article
CAS
Google Scholar
Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A (2007) Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infect Immun 75:2841–2852
Article
CAS
Google Scholar
Roop RM 2nd, Fletcher TW, Sriranganathan NM, Boyle SM, Schurig GG (1994) Identification of an immunoreactive Brucella abortus HtrA stress response protein homolog. Infect Immun 62:1000–1007
CAS
Google Scholar
Roy K, Bartels S, Qadri F, Fleckenstein JM (2010) Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infect Immun 78:3027–3035
Article
CAS
Google Scholar
Chen HW, Zhang Z, Huber E, Chao CC, Wang H, Dasch GA et al (2009) Identification of cross-reactive epitopes on the conserved 47-kilodalton antigen of Orientia tsutsugamushi and human serine protease. Infect Immun 77:2311–2319
Article
CAS
Google Scholar
Haas G, Karaali G, Ebermayer K, Metzger WG, Lamer S, Zimny-Arndt U et al (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2:313–324
Article
CAS
Google Scholar
Sanchez-Campillo M, Bini L, Comanducci M, Raggiaschi R, Marzocchi B, Pallini V et al (1999) Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 20:2269–2279
Article
CAS
Google Scholar
Weichhart T, Horky M, Sollner J, Gangl S, Henics T, Nagy E et al (2003) Functional selection of vaccine candidate peptides from Staphylococcus aureus whole-genome expression libraries in vitro. Infect Immun 71:4633–4641
Article
CAS
Google Scholar
Finco O, Frigimelica E, Buricchi F, Petracca R, Galli G, Faenzi E et al (2011) Approach to discover T- and B-cell antigens of intracellular pathogens applied to the design of Chlamydia trachomatis vaccines. Proc Natl Acad Sci USA 108:9969–9974
Article
CAS
Google Scholar
Huston WM, Armitage CW, Lawrence A, Gloeckl S, Bell SJ, Debattista J et al (2010) HtrA, RseP, and Tsp proteins do not elicit a pathology-related serum IgG response during sexually transmitted infection with Chlamydia trachomatis. J Reprod Immunol 85:168–171
Article
CAS
Google Scholar
Wang J, Zhang Y, Lu C, Lei L, Yu P, Zhong G (2010) A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. J Immunol 185:1670–1680
Article
CAS
Google Scholar
Jiao XD, Zhang M, Cheng S, Sun L (2010) Analysis of Edwardsiella tarda DegP, a serine protease and a protective immunogen. Fish Shellfish Immunol 28:672–677
Article
CAS
Google Scholar
Loosmore SM, Yang YP, Oomen R, Shortreed JM, Coleman DC, Klein MH (1998) The Haemophilus influenzae HtrA protein is a protective antigen. Infect Immun 66:899–906
CAS
Google Scholar
Zhang WW, Sun K, Cheng S, Sun L (2008) Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain. Appl Environ Microbiol 74:6254–6262
Article
CAS
Google Scholar
Li B, Zhou L, Guo J, Wang X, Ni B, Ke Y et al (2009) High-throughput identification of new protective antigens from a Yersinia pestis live vaccine by enzyme-linked immunospot assay. Infect Immun 77:4356–4361
Article
CAS
Google Scholar
Bae JE, Schurig GG, Toth TE (2002) Mice immune responses to Brucella abortus heat shock proteins. Use of baculovirus recombinant-expressing whole insect cells, purified Brucella abortus recombinant proteins, and a vaccinia virus recombinant as immunogens. Vet Microbiol 88:189–202
Article
CAS
Google Scholar
Rigoulay C, Entenza JM, Halpern D, Widmer E, Moreillon P, Poquet I et al (2005) Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Infect Immun 73:563–572
Article
CAS
Google Scholar
Daum RS, Spellberg B (2012) Development of a vaccine against Staphylococcus aureus. Semin Immunopathol 34:335–348
Article
Google Scholar
Rokbi B, Lafont C (2010) Method for the production of overproducing Staphylococcus aureus strains. US 20100880566 20100913 C12N1/20
Lees JG, Smith BR, Wien F, Miles AJ, Wallace BA (2004) CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal Biochem 332:285–289
Article
CAS
Google Scholar
Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972
Article
CAS
Google Scholar
Zhi W, Landry SJ, Gierasch LM, Srere PA (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci 1:522–529
Article
CAS
Google Scholar
Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520
CAS
Google Scholar
Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T (2004) Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117:483–494
Article
CAS
Google Scholar
Boyd D, Beckwith J (1990) The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62:1031–1033
Article
CAS
Google Scholar
von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027
CAS
Google Scholar
Kim DY, Kim KK (2005) Structure and function of HtrA family proteins, the key players in protein quality control. J Biochem Mol Biol 38:266–274
Article
CAS
Google Scholar
Cates GA, Yang YP, Klyushnichenko V, Oomen R, Loosmore SM (2000) Properties of recombinant HtrA: an otitis media vaccine candidate antigen from non-typeable Haemophilus influenzae. Dev Biol (Basel) 103:201–204
CAS
Google Scholar
Zurawa-Janicka D, Jarzab M, Polit A, Skorko-Glonek J, Lesner A, Gitlin A et al (2013) Temperature-induced changes of HtrA2(Omi) protease activity and structure. Cell Stress Chaperones 18:35–51
Article
CAS
Google Scholar
Sobiecka-Szkatula A, Polit A, Scire A, Gieldon A, Tanfani F, Szkarlat Z et al (2009) Temperature-induced conformational changes within the regulatory loops L1–L2–LA of the HtrA heat-shock protease from Escherichia coli. Biochim Biophys Acta 1794:1573–1582
Article
CAS
Google Scholar
Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347
Article
CAS
Google Scholar
Richarme G, Caldas TD (1997) Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272:15607–15612
Article
CAS
Google Scholar
Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S et al (2003) The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol Microbiol 49:143–156
Article
CAS
Google Scholar