Bradbury ARM, Sidhu S, Dübel S, McCafferty J: Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 2011, 29:245-254.
Article
Google Scholar
de Marco A: Methodologies for the isolation of alternative binders with improved clinical potentiality over conventional antibodies. Crit Rev Biotech. 2013, 33: 40-48. 10.3109/07388551.2012.665353.
Article
Google Scholar
Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D: The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005, 95: 1201-1214. 10.1111/j.1471-4159.2005.03463.x.
Article
Google Scholar
Vaneycken I, D'huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T: Immuno-imaging using nanobodies. Curr Op Biotechnol. 2011, 22: 1-5. 10.1016/j.copbio.2011.06.009.
Article
Google Scholar
Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ, van Bergen en Henegouwen PM: Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012, 11: 33-46.
Google Scholar
Palmer DB, George AJ, Ritter MA: Selection of antibodies to cell surface determinants on mouse thymic epithelial cells using a phage display library. Immunology. 1997, 91: 473-478. 10.1046/j.1365-2567.1997.00262.x.
Article
Google Scholar
de Marco A: The choice of appropriate tags improves the application effectiveness of the selected binders: the generation of user-friendly expression plasmids. Meth Mol Biol. 2012, 911: 507-522. 10.1007/978-1-61779-968-6_32.
Article
Google Scholar
Mazor Y, Van Blarcom T, Iverson BL, Georgiou G: E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nat Protoc. 2008, 3: 1766-1777. 10.1038/nprot.2008.176.
Article
Google Scholar
De Marni M, Monegal A, Venturini S, Vinati S, Carbone R, de Marco A: Antibody Purification-Independent Microarrays (PIM) by direct bacteria spotting on TiO2-treated slides.Methods 2012, 56:317-325.
Article
Google Scholar
Arbabi-Ghahroudi M, Tanha J, MacKenzie R: Prokaryotic expression of antibodies. Cancer Metastasis Rev. 2005, 24: 501-519. 10.1007/s10555-005-6193-1.
Article
Google Scholar
de Marco A: Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009, 8:26.
Article
Google Scholar
Katsuda T, Sonoda H, Kumada Y, Yamaji H: Production of antibody fragments in Escherichia coli. Methods Mol Biol 2012, 907:305-324.
Article
Google Scholar
Zarschler K, Witecy S, Kapplusch F, Foerster C, Stephan H: High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli. Microb Cell Fact 2013, 12:97.
Article
Google Scholar
Simmons LC, Reilly D, Klimowski L, Raju S, Meng G, Sims P, Hong S, Shields RL, Damico LA, Rancatore P, Yansura DG: Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies.J Immunol Meth 2002, 263:133-147.
Article
Google Scholar
Makino T, Skretas G, Kang T-H, Georgiou G: Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies. Metab Eng 2011, 13:241-251.
Article
Google Scholar
Nguyen VD, Hatahet F, Salo KE, Enlund E, Zhang C, Ruddock LW: Pre-expression of sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb Cell Fact 2011, 10:1-13.
Article
Google Scholar
Veggiani G, de Marco A: Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Prot Expr Purif. 2011, 79: 111-114. 10.1016/j.pep.2011.03.005.
Article
Google Scholar
de Marco A: Recent contributions in the field of the recombinant expression of disulfide bonded protein in bacteria. Microb Cell Fact. 2012, 11: 129-10.1186/1475-2859-11-129.
Article
Google Scholar
Matos CF, Branston SD, Albiniak A, Dhanoya A, Freedman RB, Keshavarz-Moore E, Robinson C: High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli. Biotechnol Bioeng 2012, 109:2533-2542.
Article
Google Scholar
Aronson DE, Costantini LM, Snapp EL: Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic. 2011, 12: 543-548. 10.1111/j.1600-0854.2011.01168.x.
Article
Google Scholar
Dammeyer T, Timmis KN, Tinnefeld P: Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein. Microb Cell Fact. 2013, 12: 49-10.1186/1475-2859-12-49.
Article
Google Scholar
Mazmanian SK, Liu G, Ton-That H, Schneewind O: Staphylococcus aureus sortase: an enzyme that anchors surface proteins to the cell wall. Science 1999, 285:760-763.
Article
Google Scholar
Mao H, Hart SA, Schink A, Pollok BA: Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc. 2004, 126: 2670-2671. 10.1021/ja039915e.
Article
Google Scholar
Ta HT, Prabhu S, Leitner E, Jia F, von Elverfeldt D, Jackson KE, Heidt T, Nair AK, Pearce H, von Zur Muhlen C, Wang X, Peter K, Hagemeyer CE: Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res. 2011, 109: 365-373. 10.1161/CIRCRESAHA.111.249375.
Article
Google Scholar
Botosoa EP, Maillasson M, Mougin-Degraef M, Remaud-Le Saëc P, Gestin JF, Jacques Y, Barbet J, Faivre-Chauvet A: Antibody-hapten recognition at the surface of functionalized liposomes studied by SPR: Steric hindrance of pegylated phospholipids in stealth liposomes prepared for targeted radionuclide delivery. J Drug Deliv. 2011, 2011: 368535-10.1155/2011/368535.
Article
Google Scholar
Trilling AK, Harmsen MM, Ruigrok VJ, Zuilhof H, Beekwilder J: The effect of uniform capture molecule orientation on biosensor sensitivity: dependence on analyte properties. Biosens Bioelectron. 2013, 40: 219-226. 10.1016/j.bios.2012.07.027.
Article
Google Scholar
Gurszka A, Martinelli C, Sparacio E, Pelicci PG, de Marco A: The concurrent use of N- and C-terminal antibodies anti-nucleophosmin 1 in immunofluorescence experiments allows for precise assessment of its subcellular localisation in acute myeloid leukaemia patients. Leukemia. 2012, 26: 159-163. 10.1038/leu.2011.177.
Article
Google Scholar
Parra-Palau JL, Pedersen K, Peg V, Scaltriti M, Angelini PD, Escorihuela M, Mancilla S, Sanchez Pla A, Ramony Cjal S, Baselga J, Arribas J: A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers. Cancer Res. 2010, 70: 8537-8546. 10.1158/0008-5472.CAN-10-1701.
Article
Google Scholar
M#x00FC;ller KM, Arndt KM, Pl#x00FC;ckthun A: Model and simulation of multivalent binding to fixed ligands. Anal Biochem. 1998, 261: 149-158. 10.1006/abio.1998.2725.
Article
Google Scholar
Kijanka M, Warnders F-J, El Khattabi M, Lub de Hooge M, van Dam GM, Ntziachristos V, de Vries L, Oliveira S, van Bergen en Henegouwen PMP: Rapid optical imaging of human breast tumor xenografts using anti-HER2 VHHs site-directly conjugated to IRDye800CW for image-guided surgery. Eur J Nucl Med Mol Imaging. 2013, 40: 1718-1729. 10.1007/s00259-013-2471-2.
Article
Google Scholar
Jörgensen ML, Friis NA, Just J, Madsen P, Petersen SV, Kristensen P: Expression of single-chain variable fragments fused with the Fc-region of rabbit IgG in Leishmania tarantolae. Microb Cell Fact 2014, 13:9.
Article
Google Scholar
Lebendiker M, Danieli T, de Marco A: The Trip Adviser guide to the protein science world; a proposal to improve the awareness concerning the quality of recombinant proteins. BMC Res Notes. 2014, 7: 585-10.1186/1756-0500-7-585.
Article
Google Scholar
Hatalet F, Nguyen VD, Salo KE, Ruddock LW: Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb Cell Fact. 2010, 9: 67-
Google Scholar
Djender S, Beugnet A, Schneider A, de Marco A: The biotechnological applications of recombinant single-domain antibodies are optimized by the C-terminal fusion to the EPEA sequence (C tag). Antibodies. 2014, 3: 182-191. 10.3390/antib3020182.
Article
Google Scholar
Schlegel S, Rujas E, Ytteberg AJ, Zubarev RA, Luirink J, de Gier J-W: Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact. 2013, 12: 24-10.1186/1475-2859-12-24.
Article
Google Scholar
De Meyer T, Muyldermans S, Depicker A: Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014, 32: 263-270. 10.1016/j.tibtech.2014.03.001.
Article
Google Scholar
Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K: High-affinity, developability and functional size: The holy grail of combinatorial antibody library generation. Molecules. 2011, 16: 3675-3700. 10.3390/molecules16053675.
Article
Google Scholar
Ollis AA, Zhang S, Fisher AC, DeLisa MP: Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity.Nat Chem Biol 2014, doi: 10.1038/nchembio.1609.
Google Scholar
Moutel S, El Marjou A, Vielemeyer O, Nizak C, Benaroch P, Dübel , Perez F: A multi-Fc-species-system for recombinant antibody production. BMC Biotechnol. 2009, 9: 14-10.1186/1472-6750-9-14.
Article
Google Scholar
Monegal A, Ami D, Martinelli C, Huang H, Aliprandi M, Capasso P, Francavilla C, Ossolengo G, de Marco A: Immunological applications of single domain llama recombinant antibodies isolated from a naïve library. Prot Engineer Des Sel. 2009, 22: 273-280. 10.1093/protein/gzp002.
Article
Google Scholar
Sala E, de Marco A: Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Prot Expr Purif. 2010, 74: 231-235. 10.1016/j.pep.2010.05.014.
Article
Google Scholar