Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Schroder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD: EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013, 41: D605-D612.
Article
CAS
Google Scholar
Sprenger G: Aromatic Amino Acids. Amin Acid Biosynth - Pathways, Regul Metab Eng. Edited by: Wendisch VF. 2007, 418-[Microbiology Monographs, vol. 5], Springer, Berlin, Heidelberg
Google Scholar
Herrmann KM, Weaver LM: The shikimate pathway. Annu Rev Plant Biol. 1999, 50: 473-503.
Article
CAS
Google Scholar
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW: Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell. 2006, 5: 1517-1531.
Article
CAS
Google Scholar
Latke-Eversloh T, Santos CNS, Stephanopoulos G: Perspectives of biotechnological production of L-tyrosine and its applications. Appl Microbiol Biotechnol. 2007, 77: 751-762.
Article
CAS
Google Scholar
Becker J, Wittmann C: Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012, 23: 718-726.
Article
CAS
Google Scholar
Ikeda M, Takeno S: Amino acid production by Corynebacterium glutamicum. Corynebacterium glutamicum. Volume 23. Edited by: Yukawa H, Inui M. 2013, 107-147. Springer Berlin Heidelberg, Berlin, Heidelberg
Chapter
Google Scholar
FY2013 Market and Other Information. 2014
Li Z, Ji X, Kan S, Qiao H, Jian M, Lu D, Wang J, Huang H, Jia H, Ouyuang P, Ying H: Past, Present and Future Industrial Biotechnology in China. Biotechnol China II Chem Energy Environ. Edited by: Tsao GT, Ouyang P, Chen J. 2010, 1-42. Springer, Berlin, Heidelberg
Google Scholar
Bongaerts J, Kromer M, M0Ller U, Raeven L, Wubbolts M: Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng. 2001, 3: 289-300.
Article
CAS
Google Scholar
Sprenger GA: From scratch to value: Engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol. 2007, 75: 739-749.
Article
CAS
Google Scholar
Pittard J, Yang J: Biosynthesis of the Aromatic Amino Acids.Eco Sal Plus 2008, 1.
Google Scholar
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson B: A comprehensive genome-scale reconstruction ofEscherichia colimetabolism-2011.Mol Syst Biol 2011, 7.
Google Scholar
Klein-Marcuschamer D, Santos CNS, Yu H, Stephanopoulos G: Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol. 2009, 75: 2705-2711.
Article
CAS
Google Scholar
Jeong J, Cho N, Jung D, Bang D: Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv. 2013, 31: 804-810.
Article
CAS
Google Scholar
Cheng L-K, Wang J, Xu Q-Y, Xie X-X, Zhang Y-J, Zhao C-G, Chen N: Effect of feeding strategy on L-tryptophan production by recombinant Escherichia coli. Ann Microbiol. 2012, 62: 1625-1634.
Article
CAS
Google Scholar
Patnaik R, Zolandz RR, Green DA, Kraynie DF: L-Tyrosine production by recombinant Escherichia coli : Fermentation optimization and recovery. Biotechnol Bioeng. 2008, 99: 741-752.
Article
CAS
Google Scholar
Ikeda M: Amino acid production processes. Microb Prod L-amino acids. 2003, 1-35. Springer, Berlin, Heidelberg
Chapter
Google Scholar
Gosset G: Production of aromatic compounds in bacteria. Curr Opin Biotechnol. 2009, 20: 651-658.
Article
CAS
Google Scholar
Westerhoff HV, Palsson BO: The evolution of molecular biology into systems biology. Nat Biotechnol. 2004, 22: 1249-1252.
Article
CAS
Google Scholar
Blazeck J, Alper H: Systems metabolic engineering: Genome-scale models and beyond. Biotechnol J. 2010, 5: 647-659.
Article
CAS
Google Scholar
Postma PW, Lengeler JW, Jacobson GR: Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993, 57: 543-594.
CAS
Google Scholar
Gosset G: Improvement of Escherichia coliproduction strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system.Microb Cell Fact 2005, 4:14.
Google Scholar
Escalante A, Salinas-Cervantes A, Gosset G, Bolavar F: Current knowledge of the Escherichia coli phosphoenolpyruvate carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012, 94: 1483-1494.
Article
CAS
Google Scholar
Sauer U, Eikmanns BJ: The PEP pyruvate oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev. 2005, 29: 765-794.
Article
CAS
Google Scholar
Sprenger G, Siewe R, Martin K, Sonke T: Microbial Preparation of Substances from Aromatic Metabolism/I. WO patent 98/18936. 1998
Google Scholar
Frost JW, Knop DR: Biocatalytic Synthesis of Shikimic Acid. US patent 6, 472, 169 B1. 2002
Google Scholar
Chandran SS, Yi J, Draths KM, Von Daeniken R, Weber W, Frost JW: Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog. 2003, 19: 808-814.
Article
CAS
Google Scholar
Yi J, Draths KM, Li K, Frost JW: Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog. 2003, 19: 1450-1459.
Article
CAS
Google Scholar
Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G: Metabolic engineering for improving anthranilate synthesis from glucose inEscherichia coli.Microb Cell Fact 2009, 8:19.
Google Scholar
Flores N, Xiao J, Bolivar F, Valle F: Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol. 1996, 14: 620-623.
Article
CAS
Google Scholar
Valle F, Mejia N, Berry A: Application of Glucose Transport Mutants for Production of Aromatic Pathway Compounds. WO patent 96/34961. 1996
Google Scholar
Meza E, Becker J, Bolivar F, Gosset G, Wittmann C: Consequences of phosphoenolpyruvate: sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution inEscherichia coli.Microb Cell Fact 2012, 11:127.
Google Scholar
Sabido A, Sigala JC, Hernendez-Chavez G, Flores N, Gosset G, Bolavar F: Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol Bioeng. 2014, 111: 1150-1160.
Article
CAS
Google Scholar
Patnaik R, Liao JC: Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol. 1994, 60: 3903-3908.
CAS
Google Scholar
Liao JC: Microorganisms and Methods for Overproduction of DAHP by Cloned pps Gene. WO patent 96/08567. 1996
Google Scholar
Yi J, Li K, Draths KM, Frost JW: Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog. 2002, 18: 1141-1148.
Article
CAS
Google Scholar
Liao JC, Hou SY, Chao YP: Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng. 1996, 52: 129-140.
Article
CAS
Google Scholar
Gulevich AY, Biryukova IV, Zimenkov DV, Skorokhodova AY, Kivero AD, Belareva AV, Mashko SV: Method for Producing An L-amino Acid Using A Bacterium Having Enhanced Expression of the pckA Gene. US Patent 2006/0035348 A1. 2006
Google Scholar
Tatarko M, Romeo T: Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol. 2001, 43: 26-32.
Article
CAS
Google Scholar
Yakandawala N, Romeo T, Friesen AD, Madhyastha S: Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol. 2008, 78: 283-291.
Article
CAS
Google Scholar
Zhao G, Winkler ME: An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol. 1994, 176: 6134-6138.
CAS
Google Scholar
Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M: Systematic phenome analysis ofEscherichia colimultiple-knockout mutants reveals hidden reactions in central carbon metabolism.Mol Syst Biol 2009, 5:306.
Google Scholar
Draths KM, Pompliano DL, Conley DL, Frost JW, Berry A, Disbrow GL, Staversky RJ, Lievense JC: Biocatalytic synthesis of aromatics from D-Glucose: the role of transketolase. J Am Chem Soc. 1992, 114: 3956-3962.
Article
CAS
Google Scholar
Patnaik R, Spitzer RG, Liao JC: Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol Bioeng. 1995, 46: 361-370.
Article
CAS
Google Scholar
Baez JL, Bolavar F, Gosset G: Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Biotechnol Bioeng. 2001, 73: 530-535.
Article
CAS
Google Scholar
Lu J, Liao JC: Metabolic engineering and control analysis for production of aromatics: role of transaldolase. Biotechnol Bioeng. 1997, 53: 132-138.
Article
CAS
Google Scholar
Mascarenhas D, Ashworth DJ, Chen CS: Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol. 1991, 57: 2995-2999.
CAS
Google Scholar
Ahn J, Chung BKS, Lee D, Park M, Karimi IA, Jung J, Lee H: NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. FEMS Microbiol Lett. 2011, 324: 10-16.
Article
CAS
Google Scholar
Rodriguez A, Martanez JA, Boez-Viveros JL, Flores N, Hernendez-Chevez G, Ramrrez OT, Gosset G, Bolivar F: Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of anEscherichia colistrain lacking PTS and pykF.Microb Cell Fact 2013, 12:86.
Google Scholar
Li K, Frost JW: Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol Prog. 1999, 15: 876-883.
Article
CAS
Google Scholar
Martenez K, De Anda R, Hernendez G, Escalante A, Gosset G, Ramrrez OT, Bolivar F: Coutilization of glucose and glycerol enhances the production of aromatic compounds in anEscherichia colistrain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.Microb Cell Fact 2008, 7:1.
Google Scholar
Ahn JO, Lee HW, Saha R, Park MS, Jung JK, Lee DY: Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. J Microbiol Biotechnol. 2008, 18: 1773-1784.
CAS
Google Scholar
Chen K, Dou J, Tang S, Yang Y, Wang H, Fang H, Zhou C: Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli. Bioresour Technol. 2012, 119: 141-147.
Article
CAS
Google Scholar
Baez-Viveros JL, Osuna J, Hernendez-Chavez G, Sobernn X, Bolavar F, Gosset G: Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng. 2004, 87: 516-524.
Article
CAS
Google Scholar
Liu S-P, Xiao M-R, Zhang L, Xu J, Ding Z-Y, Gu Z-H, Shi G-Y: Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochem. 2013, 48: 413-419.
Article
CAS
Google Scholar
Chavez-Bejar MI, Lara AR, Lopez H, Hernandez-Chavez G, Martinez A, Ramirez OT, Bolivar F, Gosset G: Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis. Appl Environ Microbiol. 2008, 74: 3284-3290.
Article
CAS
Google Scholar
Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD: Modular engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol. 2012, 78: 89-98.
Article
CAS
Google Scholar
Zhao Z-J, Zou C, Zhu Y-X, Dai J, Chen S, Wu D, Wu J, Chen J: Development of L-tryptophan production strains by defined genetic modification in Escherichia coli. J Ind Microbiol Biotechnol. 2011, 38: 1921-1929.
Article
CAS
Google Scholar
Shen T, Liu Q, Xie X, Xu Q, Chen N: Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. J Biomed Biotechnol. 2012, 2012: 1-8.
Google Scholar
Wang J, Cheng L-K, Wang J, Liu Q, Shen T, Chen N: Genetic engineering of Escherichia coli to enhance production of L-tryptophan. Appl Microbiol Biotechnol. 2013, 97: 7587-7596.
Article
CAS
Google Scholar
Doroshenko VG, Tsyrenzhapova IS, Krylov AA, Kiseleva EM, Ermishev VY, Kazakova SM, Biryukova IV, Mashko SV: Pho regulon promoter-mediated transcription of the key pathway gene aroGFbr improves the performance of an L-phenylalanine-producing Escherichia coli strain. Appl Microbiol Biotechnol. 2010, 88: 1287-1295.
Article
CAS
Google Scholar
Dell KA, Frost JW: Identification and removal of impediments to biocatalytic synthesis of aromatics from D-Glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc. 1993, 115: 11581-11589.
Article
CAS
Google Scholar
Kramer M, Bongaerts J, Bovenberg R, Kremer S, M0Ller U, Orf S, Wubbolts M, Raeven L: Metabolic engineering for microbial production of shikimic acid. Metab Eng. 2003, 5: 277-283.
Article
CAS
Google Scholar
Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R: Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog. 2004, 20: 1623-1633.
Article
CAS
Google Scholar
Escalante A, Calderon R, Valdivia A, De Anda R, Hernindez G, Ramarez OT, Gosset G, Bolavar F: Metabolic engineering for the production of shikimic acid in an evolvedEscherichia colistrain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.Microb Cell Fact 2010, 9:21.
Google Scholar
Lutke-Eversloh T, Stephanopoulos G: Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: Generation and characterization of tyrosine-insensitive mutants. Appl Environ Microbiol. 2005, 71: 7224-7228.
Article
CAS
Google Scholar
Cui Y-Y, Ling C, Zhang Y-Y, Huang J, Liu J-Z: Production of shikimic acid fromEscherichia colithrough chemically inducible chromosomal evolution and cofactor metabolic engineering.Microb Cell Fact 2014, 13:21.
Google Scholar
Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidon G: Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng. 2005, 92: 541-552.
Article
CAS
Google Scholar
Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z: Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresour Technol. 2014, 166: 64-71.
Article
CAS
Google Scholar
Ghosh S, Chisti Y, Banerjee UC: Production of shikimic acid. Biotechnol Adv. 2012, 30: 1425-1431.
Article
CAS
Google Scholar
Rawat G, Tripathi P, Saxena RK: Expanding horizons of shikimic acid: Recent progresses in production and its endless frontiers in application and market trends. Appl Microbiol Biotechnol. 2013, 97: 4277-4287.
Article
CAS
Google Scholar
Tripathi P, Rawat G, Yadav S, Saxena RK: Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route. Bioprocess Biosyst Eng. 2013, 36: 1665-1673.
Article
CAS
Google Scholar
Estevez A, Estevez R: A short overview on the medicinal chemistry of shikimic acid. Mini Rev Med Chem. 2012, 12: 1443-1454.
Article
CAS
Google Scholar
Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muiz-Rascado L, Garca-Sotelo JS, Weiss V, Solano-Lira H, Martnez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernndez S, Alquicira-Hernndez K, Lpez-Fuentes A, Porrn-Sotelo L, Huerta AM, Bonavides-Martnez C, Balderas-Martnez YI, Pannier L, Olvera M, Labastida A, Jimonez-Jacinto V, Vega-Alvarado L, Del Moral-Chovez V, Hernndez-Alvarez A, Morett E, Collado-Vides J: RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res. 2013, 41 (Database issue): D203-D213.
Article
CAS
Google Scholar
Boez-Viveros J, Flores N, Jurez K, Castillo-Espaa P, Bolivar F, Gosset G: Metabolic transcription analysis of engineeredEscherichia colistrains that overproduce L-phenylalanine.Microb Cell Fact 2007, 6:30.
Doroshenko VG, Shakulov RS, Kazakova SM, Kivero AD, Yampolskaya TA, Mashko SV: Construction of an L-phenylalanine-producing tyrosine-prototrophic Escherichia coli strain using tyrA ssrA-like tagged alleles. Biotechnol Lett. 2010, 32: 1117-1121.
Article
CAS
Google Scholar
Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S: YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett. 2007, 275: 312-318.
Article
CAS
Google Scholar
Liu Q, Cheng Y, Xie X, Xu Q, Chen N: Modification of tryptophan transport system and its impact on production of L-tryptophan in Escherichia coli. Bioresour Technol. 2012, 114: 549-554.
Article
CAS
Google Scholar
Gu P, Yang F, Li F, Liang Q, Qi Q: Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Appl Microbiol Biotechnol. 2013, 97: 6677-6683.
Article
CAS
Google Scholar
Gu P, Yang F, Kang J, Wang Q, Qi Q: One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan inEscherichia coli.Microb Cell Fact 2012, 11:30.
Google Scholar
Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten CJ, Korneli C, De Souza Lima AO, Porto LM, Sprenger GA, Wittmann C: Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng. 2013, 20: 29-41.
Article
CAS
Google Scholar
Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K: Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol. 2012, 78: 6203-6216.
Article
CAS
Google Scholar
Muoz AJ, Hernndez-Chvez G, Anda R, Martnez A, Bolavar F, Gosset G: Metabolic engineering of Escherichia coli for improving L-3, 4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. J Ind Microbiol Biotechnol. 2011, 38: 1845-1852.
Article
CAS
Google Scholar
Sun Z, Ning Y, Liu L, Liu Y, Sun B, Jiang W, Yang C, Yang S: Metabolic engineering of the L-phenylalanine pathway inEscherichia colifor the production of S- or R-mandelic acid.Microb Cell Fact 2011, 10:71.
Google Scholar
Rodrigues AL, Becker J, De Souza Lima AO, Porto LM, Wittmann C: Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng. 2014, 20: 1-31.
CAS
Google Scholar
Eudes A, Juminaga D, Baidoo EE, Collins FW, Keasling JD, Loqu D: Production of hydroxycinnamoyl anthranilates from glucose inEscherichia coli.Microb Cell Fact 2013, 12:62.
Google Scholar
Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG: High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol. 2011, 77: 3451-3460.
Article
CAS
Google Scholar
Lynch SA, Gill RT: Synthetic biology: New strategies for directing design. Metab Eng. 2012, 14: 205-211.
Article
CAS
Google Scholar
Luo Y, Lee J-K, Zhao H: Challenges and opportunities in synthetic biology for chemical engineers. Chem Eng Sci. 2013, 103: 115-119.
Article
CAS
Google Scholar
Boyle PM, Silver PA: Parts plus pipes: Synthetic biology approaches to metabolic engineering. Metab Eng. 2012, 14: 223-232.
Article
CAS
Google Scholar
Yadav VG, De Mey M, Giaw Lim C, Kumaran Ajikumar P, Stephanopoulos G: The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metab Eng. 2012, 14: 233-241.
Article
CAS
Google Scholar
Latke-Eversloh T, Stephanopoulos G: Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng. 2008, 10: 69-77.
Article
CAS
Google Scholar
Yao Y-F, Wang C-S, Qiao J, Zhao G-R: Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng. 2013, 19: 79-87.
Article
CAS
Google Scholar
Albermann C, Ghanegaonkar S, Lemuth K, Vallon T, Reuss M, Armbruster W, Sprenger G a: Biosynthesis of the vitamin E compound delta-tocotrienol in recombinant Escherichia coli cells. Chembiochem. 2008, 9: 2524-2533.
Article
CAS
Google Scholar
Ghanegaonkar S, Conrad J, Beifuss U, Sprenger G a, Albermann C: Towards the in vivo production of tocotrienol compounds: engineering of a plasmid-free Escherichia coli strain for the heterologous synthesis of 2-methyl-6-geranylgeranyl-benzoquinol. J Biotechnol. 2012, 164: 238-247.
Article
CAS
Google Scholar
Nakagawa A, Minami H, Kim J-S, Koyanagi T, Katayama T, Sato F, Kumagai H: A bacterial platform for fermentative production of plant alkaloids.Nat Commun 2011, 2:326.
Google Scholar
Wu J, Du G, Zhou J, Chen J: Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng. 2013, 16: 48-55.
Article
CAS
Google Scholar
Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J: Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J Biotechnol. 2013, 167: 404-411.
Article
CAS
Google Scholar
Nakajima M, Nishino Y, Tamura M, Mase K, Masai E, Otsuka Y, Nakamura M, Sato K, Fukuda M, Shigehara K, Ohara S, Katayama Y, Kajita S: Microbial conversion of glucose to a novel chemical building block, 2-pyrone-4, 6-dicarboxylic acid. Metab Eng. 2009, 11: 213-220.
Article
CAS
Google Scholar
Santos CNS, Xiao W, Stephanopoulos G: Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci. 2012, 109: 13538-13543.
Article
CAS
Google Scholar
Alper H, Stephanopoulos G: Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng. 2007, 9: 258-267.
Article
CAS
Google Scholar
Kang S-Y, Choi O, Lee JK, Hwang BY, Uhm T-B, Hong Y-S: Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducingEscherichia coli strain.Microb Cell Fact 2012, 11:153.
Google Scholar
Zhang H, Stephanopoulos G: Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2013, 97: 3333-3341.
Article
CAS
Google Scholar
Huang Q, Lin Y, Yan Y: Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng. 2013, 110: 3188-3196.
Article
CAS
Google Scholar
Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS: Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab Eng. 2012, 14: 603-610.
Article
CAS
Google Scholar
Wang HH, Isaacs FJ, Carr P a, Sun ZZ, Xu G, Forest CR, Church GM: Programming cells by multiplex genome engineering and accelerated evolution. Nature. 2009, 460: 894-898.
Article
CAS
Google Scholar
Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM: Genome-scale promoter engineering by coselection MAGE. Nat Methods. 2012, 9: 591-593.
Article
CAS
Google Scholar
Yang J, Seo SW, Jang S, Shin S-I, Lim CH, Roh T-Y, Jung GY: Synthetic RNA devices to expedite the evolution of metabolite-producing microbes.Nat Commun 2013, 4:1413.
Google Scholar
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY: Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol. 2013, 31: 170-174.
Article
CAS
Google Scholar
Shimizu K: Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J. 2009, 46: 235-251.
Article
CAS
Google Scholar
Bro C, Nielsen J: Impact of ome analyses on inverse metabolic engineering. Metab Eng. 2004, 6: 204-211.
Article
CAS
Google Scholar
Park JH, Lee SY, Kim TY, Kim HU: Application of systems biology for bioprocess development. Trends Biotechnol. 2008, 26: 404-412.
Article
CAS
Google Scholar
Park JH, Lee SY: Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol. 2008, 19: 454-460.
Article
CAS
Google Scholar
Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nh K, Noack S: Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol. 2011, 77: 6644-6652.
Article
CAS
Google Scholar
Becker J, Zelder O, Hofner S, Schrder H, Wittmann C: From zero to hero Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011, 13: 159-168.
Article
CAS
Google Scholar
Van Ooyen J, Noack S, Bott M, Reth A, Eggeling L: Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012, 109: 2070-2081.
Article
CAS
Google Scholar
Singh P, Batth TS, Juminaga D, Dahl RH, Keasling JD, Adams PD, Petzold CJ: Application of targeted proteomics to metabolically engineered Escherichia coli. Proteomics. 2012, 12: 1289-1299.
Article
CAS
Google Scholar
Kedar P, Colah R, Shimizu K: Proteomic investigation on the pyk-F gene knockout Escherichia coli for aromatic amino acid production. Enzyme Microb Technol. 2007, 41: 455-465.
Article
CAS
Google Scholar
Polen T, Kromer M, Bongaerts J, Wubbolts M, Wendisch VF: The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol. 2005, 115: 221-237.
Article
CAS
Google Scholar
Corts-Tolalpa L, Gutirrez-Ros RM, Martnez LM, De Anda R, Gosset G, Bolvar F, Escalante A: Global transcriptomic analysis of an engineeredEscherichia colistrain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium.Microb Cell Fact 2014, 13:28.
Google Scholar
Johansson L, Lidon G: Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions. J Biotechnol. 2006, 126: 528-545.
Article
CAS
Google Scholar
Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S: Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol. 2006, 188: 8259-8271.
Article
CAS
Google Scholar
Xu Z, Sun X, Yu S: Genome-scale analysis to the impact of gene deletion on the metabolism ofE. coli: constraint-based simulation approach.BMC Bioinformatics 2009, 10(Suppl 1):S62.
Google Scholar
Rizk ML, Liao JC: Ensemble modeling for aromatic production inEscherichia coli.PLoS One 2009, 4:e6903.
Google Scholar
Takors R: Scale-up of microbial processes: Impacts, tools and open questions. J Biotechnol. 2012, 160: 3-9.
Article
CAS
Google Scholar
Lara AR, Galindo E, Ramirez OT, Palomares LA: Living with heterogeneities in bioreactors. Understanding the effects of environmental gradients on cells. Mol Biotechnol. 2006, 34: 355-381.
Article
CAS
Google Scholar
Noorman H: An industrial perspective on bioreactor scale-down: What we can learn from combined large-scale bioprocess and model fluid studies. Biotechnol J. 2011, 6: 934-943.
Article
CAS
Google Scholar
Wang J, Huang J, Shi J, Xu Q, Xie X, Chen N: Fermentation characterization of an L-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase. Ann Microbiol. 2013, 63: 1219-1224.
Article
CAS
Google Scholar
Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P: Production of L-phenylalanine from glycerol by a recombinant Escherichia coli. J Ind Microbiol Biotechnol. 2009, 36: 1267-1274.
Article
CAS
Google Scholar
Weiner M, Albermann C, Gottlieb K, Sprenger GA, Weuster-Botz D: Fed-batch production of L-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochem Eng J. 2014, 83: 62-69.
Article
CAS
Google Scholar
Liu SP, Liu RX, Xiao MR, Zhang L, Ding ZY, Gu ZH, Shi GY: A systems level engineered E. coli capable of efficiently producing L-phenylalanine. Process Biochem. 2014, 49: 751-757.
Article
CAS
Google Scholar
Hu Y, Tang T, Yang W, Zhou H: Bioconversion of phenylpyruvic acid to L-phenylalanine by mixed-gel immobilization of Escherichia coli EP8-10. Process Biochem. 2009, 44: 142-145.
Article
CAS
Google Scholar