Vlieghe P, Lisowski V, Khrestchatisky M, Martinez J: Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010, 15: 40-56.
Article
CAS
Google Scholar
Guzman F, Barberis S, Illanes A: Peptide synthesis: chemical or enzymatic. Electronic Journal of Biotechnology, vol. 10. 2007, Valparaiso: Pontificia Universidad Católica de Valparaíso
Google Scholar
Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M: Large-scale synthesis of peptides. Pept Sci. 2000, 55: 227-250. 10.1002/1097-0282(2000)55:3<227::AID-BIP50>3.0.CO;2-7.
Article
CAS
Google Scholar
Li Y: Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif. 2011, 80: 260-267.
Article
CAS
Google Scholar
Lee EJ, Kim HS, Lee EY: Recombinant biocatalytic and cell-free synthesis of HIV fusion inhibitor. J Ind Eng Chem. 2005, 11: 515-521.
CAS
Google Scholar
Rajendran L, Knölker HJ, Simons K: Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010, 9: 29-42.
Article
CAS
Google Scholar
Kaspar AA, Reichert JM: Future directions for peptide therapeutics development. Drug Discov Today. 2013, 18: 807-817.
Article
CAS
Google Scholar
Minko T, Dharap SS, Fabbricatore AT: Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect Prev. 2003, 27: 193-202.
Article
CAS
Google Scholar
Kashiwagi H, McDunn JE, Goedegebuure PS, Gaffney MC, Chang K, Trinkaus K, Piwnica-Worms D, Hotchkiss RS, Hawkins WG: TAT-Bim induces extensive apoptosis in cancer cells. Ann Surg Oncol. 2007, 14: 1763-1771.
Article
Google Scholar
Michod D, Yang JY, Chen J, Bonny C, Widmann C: A RasGAP-derived cell permeable peptide potently enhances genotoxin-induced cytotoxicity in tumor cells. Oncogene. 2004, 23: 8971-8978.
Article
CAS
Google Scholar
Jalota-Badhwar A, Kaul-Ghanekar R, Mogare D, Boppana R, Paknikar KM, Chattopadhyay S: SMAR1-Derived P44 peptide retains its tumor suppressor function through modulation of p53. J Biol Chem. 2007, 282: 9902-9913.
Article
CAS
Google Scholar
Hosotani R, Miyamoto Y, Fujimoto K, Doi R, Otaka A, Fujii N, Imamura M: Trojan p16 peptide suppresses pancreatic cancer growth and prolongs survival in mice. Clin Cancer Res. 2002, 8: 1271-1276.
CAS
Google Scholar
Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, Oh-Hara T, Tsuruo T: Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated smac peptide. Cancer Res. 2003, 63: 831-837.
CAS
Google Scholar
Lv GS, Huo GC, Fu XY: Expression of milk-derived antihypertensive peptide in Escherichia coli. J Dairy Sci. 2003, 86: 1927-1931.
Article
CAS
Google Scholar
Li Y, Li X, Wang G: Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr Purif. 2006, 47: 498-505.
Article
CAS
Google Scholar
Rao X, Hu J, Li S, Jin X, Zhang C, Cong Y, Hu X, Tan Y, Huang J, Chen Z, Zhu J, Hu F: Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli. Peptides. 2005, 26: 721-729.
Article
CAS
Google Scholar
Kuliopulos A, Walsh CT: Production, purification, and cleavage of tandem repeats of recombinant peptides. J Am Chem Soc. 1994, 116: 4599-4607. 10.1021/ja00090a008.
Article
CAS
Google Scholar
Rodríguez JC, Wong L, Jennings PA: The solvent in CNBr cleavage reactions determines the fragmentation efficiency of ketosteroid isomerase fusion proteins used in the production of recombinant peptides. Protein Expr Purif. 2003, 28: 224-231.
Article
Google Scholar
Li Q, Chen AS, Gayen S, Kang C: Expression and purification of the p75 neurotrophin receptor transmembrane domain using a ketosteroid isomerase tag. Microb Cell Fact. 2012, 11: 45-
Article
CAS
Google Scholar
Britton ZT, Hanle EI, Robinson AS: An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization. Protein Expr Purif. 2012, 84: 224-235.
Article
CAS
Google Scholar
Derossi D, Joliot AH, Chassaing G, Prochiantz A: The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994, 269: 10444-10450.
CAS
Google Scholar
Brugidou J, Legrand C, Mery J, Rabie A: The retro-inverso form of a homeobox-derived short peptide is rapidly internalised by cultured neurones: a new basis for an efficient intracellular delivery system. Biochem Biophys Res Commun. 1995, 214: 685-693.
Article
CAS
Google Scholar
Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B, Grafstrom RC, Wiman KG: Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med. 1997, 3: 632-638.
Article
CAS
Google Scholar
Kim AL, Raffo AJ, Brandt-Rauf PW, Pincus MR, Monaco R, Abarzua P, Fine RL: Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem. 1999, 274: 34924-34931.
Article
CAS
Google Scholar
Li Y, Mao Y, Rosal RV, Dinnen RD, Williams AC, Brandt-Rauf PW, Fine RL: Selective induction of apoptosis through the FADD/caspase-8 pathway by a p53 c-terminal peptide in human pre-malignant and malignant cells. Int J Cancer. 2005, 115: 55-64.
Article
CAS
Google Scholar
Dinnen RD, Drew L, Petrylak DP, Mao Y, Cassai N, Szmulewicz J, Brandt-Rauf P, Fine RL: Activation of targeted necrosis by a p53 peptide: a novel death pathway that circumvents apoptotic resistance. J Biol Chem. 2007, 282: 26675-26686.
Article
CAS
Google Scholar
Senatus PB, Li Y, Mandigo C, Nichols G, Moise G, Mao Y, Brown MD, Anderson RC, Parsa AT, Brandt-Rauf PW: Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide. Mol Cancer Ther. 2006, 5: 20-28.
Article
CAS
Google Scholar
Kanovsky M, Raffo A, Drew L, Rosal R, Do T, Friedman FK, Rubinstein P, Visser J, Robinson R, Brandt-Rauf PW, Michl J, Fine RL, Pincus MR: Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc Natl Acad Sci U S A. 2001, 98: 12438-12443.
Article
CAS
Google Scholar
Do TN, Rosal RV, Drew L, Raffo AJ, Michl J, Pincus MR, Friedman FK, Petrylak DP, Cassai N, Szmulewicz J, Sidhu G, Fine RL, Brandt-Rauf PW: Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene. 2003, 22: 1431-1444.
Article
CAS
Google Scholar
Sookraj KA, Adler V, Yazdi ES, Zenilman ME, Michl J, Pincus MR, Bowne WB: Novel p53-derived peptide induces necrosis by membrane-pore formation in pancreatic cancer cells. J Am Coll Surg. 2008, 207: S97-S98.
Article
Google Scholar
Kelley AS, Victor A, Ehsan S-Y, Martin B, Michael EZ, Josef M, Matthew RP, Wilbur BB: W1961 Novel p53-derived peptide induces extensive necrosis in cancer cells. Gastroenterology. 2008, 134: A-743-
Google Scholar
Brandt-Rauf PW, Rosal RV, Fine RL, Pincus MR: Computational protein chemistry of p53 and p53 peptides. Front Biosci. 2004, 9: 2778-2787.
Article
CAS
Google Scholar
Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H: NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry. 2004, 43: 1854-1861.
Article
CAS
Google Scholar
Sookraj KA, Bowne WB, Adler V, Sarafraz-Yazdi E, Michl J, Pincus MR: The anti-cancer peptide, PNC-27, induces tumor cell lysis as the intact peptide. Cancer Chemother Pharmacol. 2010, 66: 325-331.
Article
CAS
Google Scholar
Sarafraz-Yazdi E, Bowne WB, Adler V, Sookraj KA, Wu V, Shteyler V, Patel H, Oxbury W, Brandt-Rauf P, Zenilman ME, Michl J, Pincus MR: Anticancer peptide PNC-27 adopts an HDM-2-binding conformation and kills cancer cells by binding to HDM-2 in their membranes. Proc Natl Acad Sci U S A. 2010, 107: 1918-1923.
Article
CAS
Google Scholar
Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z, Broglio K, Berry DA, Hung MC: MDM2 Promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol. 2006, 26: 7269-7282.
Article
CAS
Google Scholar
Bollag DM, Rozycki MD, Edelstein SJ: Protein methods. 1996, New York: Wiley-Liss, Inc, Second
Google Scholar
Chang JY: Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem. 1985, 151: 217-224.
Article
CAS
Google Scholar
Cipáková I, Gasperík J, Hostinová E: Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr Purif. 2006, 45: 269-274.
Article
Google Scholar
Sharpe S, Yau WM, Tycko R: Expression and purification of a recombinant peptide from the Alzheimer’s beta-amyloid protein for solid-state NMR. Protein Expr Purif. 2005, 42: 200-210.
Article
CAS
Google Scholar
Yin X, Wei D, Yi L, Tao X, Ma Y: Expression and purification of exendin-4, a GLP-1 receptor agonist, in Escherichia coli. Protein Expr Purif. 2005, 41: 259-265.
Article
CAS
Google Scholar
Lee SY, Chang HN: Characteristics of poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. Ann N Y Acad Sci. 1996, 782: 133-142.
Article
CAS
Google Scholar