Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD: Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 2008, 26 (7): 375-381. 10.1016/j.tibtech.2008.03.008
Article
CAS
Google Scholar
Berger RG: Biotechnology of flavours–the next generation. Biotechnol Lett. 2009, 31 (11): 1651-1659. 10.1007/s10529-009-0083-5
Article
CAS
Google Scholar
Behr A, Johnen L: Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem. 2009, 2 (12): 1072-1095. 10.1002/cssc.200900186
Article
CAS
Google Scholar
Keasling JD: Microbial production of isoprenoids. Handbook of hydrocarbon and lipid microbiology. Edited by: Timmis KN. 2010, 2951-2966. Berlin Heidelberg: Springer
Chapter
Google Scholar
Peralta-Yahya PP, Keasling JD: Advanced biofuel production in microbes. Biotechnol J. 2010, 5 (2): 147-162. 10.1002/biot.200900220
Article
CAS
Google Scholar
Burke CC, Wildung MR, Croteau R: Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci U S A. 1999, 96 (23): 13062-13067. 10.1073/pnas.96.23.13062
Article
CAS
Google Scholar
Mahmoud SS, Croteau RB: Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci. 2002, 7 (8): 366-373. 10.1016/S1360-1385(02)02303-8
Article
CAS
Google Scholar
Kirby J, Keasling JD: Metabolic engineering of microorganisms for isoprenoid production. Nat Prod Rep. 2008, 25 (4): 656-661. 10.1039/b802939c
Article
CAS
Google Scholar
Jiang M, Stephanopoulos G, Pfeifer BA: Biosynthetic design and implementation towards E. coli-derived Taxol and other heterologous polyisoprene compounds. Appl Environ Microbiol. 2012, 78 (8): 2497-2504. 10.1128/AEM.07391-11
Article
CAS
Google Scholar
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A: Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011, 7: 487-
Article
Google Scholar
Rude MA, Schirmer A: New microbial fuels: a biotech perspective. Curr Opin Microbiol. 2009, 12 (3): 274-281. 10.1016/j.mib.2009.04.004
Article
CAS
Google Scholar
Agresti J: Gel-encapsulated microcolony screening. 2012, US: Amyris, Inc., Emeryville, CA., USA
Google Scholar
Blois MS: Antioxidant determinations by the Use of a stable free radical. Nature. 1958, 181 (4617): 1199-1200. 10.1038/1811199a0.
Article
CAS
Google Scholar
Choi HS, Song HS, Ukeda H, Sawamura M: Radical-scavenging activities of citrus essential oils and their components: detection using 1, 1-diphenyl-2-picrylhydrazyl. J Agr Food Chem. 2000, 48 (9): 4156-4161. 10.1021/jf000227d.
Article
CAS
Google Scholar
Tepe B, Akpulat HA, Sokmen M, Daferera D, Yumrutas O, Aydin E, Polissiou M, Sokmen A: Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem. 2006, 97 (4): 719-724. 10.1016/j.foodchem.2005.05.045.
Article
CAS
Google Scholar
Tundis R, Loizzo MR, Bonesi M, Menichini F, Mastellone V, Colica C, Menichini F: Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of citrus aurantifolia swingle, C. Aurantium L., and C. Bergamia risso and poit. J Food Sci. 2012, 77 (1): 40-46.
Article
Google Scholar
Kurechi T, Kikugawa K, Kato T: Studies on the antioxidants. 13. Hydrogen donating capability of antioxidants to 2, 2-diphenyl-1-picrylhydrazyl. Chem Pharm Bull. 1980, 28 (7): 2089-2093. 10.1248/cpb.28.2089.
Article
CAS
Google Scholar
Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD: High-level production of amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng. 2006, 95 (4): 684-691. 10.1002/bit.21017
Article
CAS
Google Scholar
Steen EJ, Kang YS, Bokinsky G, Hu ZH, Schirmer A, McClure A, del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010, 463 (7280): 559-562. 10.1038/nature08721
Article
CAS
Google Scholar
Brennan TCR, Turner CD, Kromer JO, Nielsen LK: Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012, 109 (10): 2513-2522. 10.1002/bit.24536
Article
CAS
Google Scholar
Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS: Identification and microbial production of a terpene-based advanced biofuel. Nat Commun. 2011, 2: 483-
Article
Google Scholar
Xie XK, Kirby J, Keasling JD: Functional characterization of four sesquiterpene synthases from Ricinus communis (Castor bean). Phytochemistry. 2012, 78: 20-28.
Article
CAS
Google Scholar
Sharma OP, Bhat TK: DPPH antioxidant assay revisited. Food Chem. 2009, 113 (4): 1202-1205. 10.1016/j.foodchem.2008.08.008.
Article
CAS
Google Scholar
Ballauff M, Wolf BA: Degradation of chain molecules 2. Thermodynamically induced shear degradation of dissolved polystyrene. Macromolecules. 1984, 17 (2): 209-216. 10.1021/ma00132a016.
Article
CAS
Google Scholar
Yoshida H, Tsuji K, Hayashi K, Okamura S: Study on the reaction between polymer radical and 1, 1-diphenyl-2-picrylhydrazyl. Bull Inst Chem Res, Kyoto Univ. 1963, 41 (1): 39-47.
CAS
Google Scholar
Gellert G, Stommel A: Influence of microplate material on the sensitivity of growth inhibition tests with bacteria assessing toxic organic substances in water and waste water. Environ Toxicol. 1999, 14 (4): 424-428. 10.1002/(SICI)1522-7278(1999)14:4<424::AID-TOX8>3.0.CO;2-4.
Article
CAS
Google Scholar
Gabrielson J, Kuhn I, Colque-Navarro P, Hart M, Iversen A, Mckenzie D, Mollby R: Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals (vol 485, pg 121, 2002). Anal Chim Acta. 2003, 488 (1): 133-133. 10.1016/S0003-2670(03)00659-7.
Article
CAS
Google Scholar
Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, et al: Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A. 2011, 108 (50): 19949-19954. 10.1073/pnas.1106958108
Article
CAS
Google Scholar
Burda S, Oleszek W: Antioxidant and antiradical activities of flavonoids. J Agr Food Chem. 2001, 49 (6): 2774-2779. 10.1021/jf001413m.
Article
CAS
Google Scholar
Silva MM, Santos MR, Caroco G, Rocha R, Justino G, Mira L: Structure-antioxidant activity relationships of flavonoids: a re-examination. Free Radic Res. 2002, 36 (11): 1219-1227. 10.1080/198-1071576021000016472
Article
CAS
Google Scholar
Cai YZ, Sun M, Xing J, Luo Q, Corke H: Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78 (25): 2872-2888. 10.1016/j.lfs.2005.11.004
Article
CAS
Google Scholar
Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G: Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem. 2009, 74 (7): 2699-2709. 10.1021/jo802716v
Article
CAS
Google Scholar
Jimenez-Escrig A, Jimenez-Jimenez I, Sanchez-Moreno C, Saura-Calixto F: Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2, 2-diphenyl-1-picrylhydrazyl. J Sci Food Agr. 2000, 80 (11): 1686-1690. 10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y.
Article
CAS
Google Scholar
Bondet V, BrandWilliams W, Berset C: Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Food Sci Technol-Leb. 1997, 30 (7): 772-772. 10.1006/fstl.1997.0328.
Article
CAS
Google Scholar
Eklund PC, Langvik OK, Warna JP, Salmi TO, Willfor SM, Sjoholm RE: Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Org Biomol Chem. 2005, 3 (18): 3336-3347. 10.1039/b506739a
Article
CAS
Google Scholar
Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA: De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. Fems Microbiol Lett. 2005, 243 (1): 107-115. 10.1016/j.femsle.2004.11.050
Article
CAS
Google Scholar
Huang BB, Zeng HNA, Dong LL, Li YY, Sun LN, Zhu ZY, Chai YF, Chen WS: Metabolite target analysis of isoprenoid pathway in Saccharomyces cerevisiae in response to genetic modification by GC-SIM-MS coupled with chemometrics. Metabolomics. 2011, 7 (1): 134-146. 10.1007/s11306-010-0240-9.
Article
CAS
Google Scholar
Thulasiram HV, Poulter CD: Farnesyl diphosphate synthase: The art of compromise between substrate selectivity and stereoselectivity. J Am Chem Soc. 2006, 128 (49): 15819-15823. 10.1021/ja065573b
Article
CAS
Google Scholar
Lücker J, El Tamer MK, Schwab W, Verstappen FWA, van der Plas LHW, Bouwmeester HJ, Verhoeven HA: Monoterpene biosynthesis in lemon (Citrus limon) - cDNA isolation and functional analysis of four monoterpene synthases. Eur J Biochem. 2002, 269 (13): 3160-3171. 10.1046/j.1432-1033.2002.02985.x
Article
Google Scholar
Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W: Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys. 2007, 465 (2): 417-429. 10.1016/j.abb.2007.06.011
Article
CAS
Google Scholar
Rajaonarivony JI, Gershenzon J, Croteau R: Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Arch Biochem Biophys. 1992, 296 (1): 49-57. 10.1016/0003-9861(92)90543-6
Article
CAS
Google Scholar
Imai T, Ohno T: Measurement of yeast intracellular pH by image processing and the change it undergoes during growth phase. J Biotechnol. 1995, 38 (2): 165-172. 10.1016/0168-1656(94)00130-5
Article
CAS
Google Scholar
Slavik J, Kotyk A: Intracellular pH distribution and transmembrane pH profile of yeast cells. Biochim Biophys Acta. 1984, 766 (3): 679-684. 10.1016/0005-2728(84)90129-4
Article
CAS
Google Scholar
Guldfeldt LU, Arneborg N: Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl Environ Microbiol. 1998, 64 (2): 530-534.
CAS
Google Scholar
Imai T, Ohno T: The relationship between viability and intracellular Ph in the yeast saccharomyces-cerevisiae. Appl Environ Microb. 1995, 61 (10): 3604-3608.
CAS
Google Scholar
Mendes-Ferreira A, Barbosa C, Falco V, Leao C, Mendes-Faia A: The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J Ind Microbiol Biotechnol. 2009, 36 (4): 571-583. 10.1007/s10295-009-0527-x
Article
CAS
Google Scholar
Magasanik B, Kaiser CA: Nitrogen regulation in Saccharomyces cerevisiae. Gene. 2002, 290 (1–2): 1-18.
Article
CAS
Google Scholar
Hernandez-Orte P, Bely M, Cacho J, Ferreira V: Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Aust J Grape Wine R. 2006, 12 (2): 150-160. 10.1111/j.1755-0238.2006.tb00055.x.
Article
CAS
Google Scholar
Shriner RL, Hermann CKF, Morrill TC, Curtin DY, Fuson RC: The systematic identification of organic compounds. 2004, Hoboken, NJ: Wiley, 8
Google Scholar
, : YPD media. Cold Spring Harbor Laboratory Protocols. 2010, http://dx.doi.org/10.1101/pdb.rec12315.
Google Scholar
Colby SM, Alonso WR, Katahira EJ, Mcgarvey DJ, Croteau R: 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata). J Biol Chem. 1993, 268 (31): 23016-23024.
CAS
Google Scholar
Williams DC, McGarvey DJ, Katahira EJ, Croteau R: Truncation of limonene synthase preprotein provides a fully active ‘Pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry. 1998, 37 (35): 12213-12220. 10.1021/bi980854k
Article
CAS
Google Scholar
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, et al: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006, 440 (7086): 940-943. 10.1038/nature04640
Article
CAS
Google Scholar
Donald KAG, Hampton RY, Fritz IB: Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol. 1997, 63 (9): 3341-3344.
CAS
Google Scholar
Davies BSJ, Wang HS, Rine J: Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol and Cell Biol. 2005, 25 (16): 7375-7385. 10.1128/MCB.25.16.7375-7385.2005.
Article
CAS
Google Scholar
Jang HJ, Yoon SH, Ryu HK, Kim JH, Wang CL, Kim JY, Oh DK, Kim SW: Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb Cell Fact. 2011, 10: 59- 10.1186/1475-2859-10-59
Article
CAS
Google Scholar
Grob K: Broadening of peaks eluted before the solvent in capillary GC. 1. The role of solvent trapping. Chromatographia. 1983, 17 (7): 357-360. 10.1007/BF02262372.
Article
CAS
Google Scholar
Grob K, Schilling B: Broadening of peaks eluted before the solvent in capillary GC. 2. The role of phase soaking. Chromatographia. 1983, 17 (7): 361-367. 10.1007/BF02262373.
Article
CAS
Google Scholar