Skip to main content

Bacterial cell factories for recombinant protein production; expanding the catalogue

Escherichia coli has been the pioneering host for recombinant protein production, since the original recombinant DNA procedures were developed using its genetic material and infecting bacteriophages. As a consequence, and because of the accumulated know-how on E. coli genetics and physiology and the increasing number of tools for genetic engineering adapted to this bacterium, E. coli is the preferred host when attempting the production of a new protein. Also, it is still the first choice for protein production at laboratory and industrial scales for an important number of proteins, being fast growth and simple culture procedures critical issues. When searching for an ideal system for protein production, this bacterial species is clearly far from offering, in generic terms, optimal conditions for protein production and downstream. Plasmid loss and antibiotic-based maintenance, undesired chemical inducers of gene expression, plasmid/protein-mediated metabolic burden and stress responses, lack of post-translational modifications (including the inability to form disulphide bonds), none or poor secretion, protein aggregation and proteolytic digestion, endotoxin contamination and complex downstream are among the main obstacles encountered during protein production in E. coli. In the pharmaceutical scenario, proper protein glycosylation is often requested and simplest purification procedures become highly desirable when pursuing cost-effective bioproduction. In this context, the yeast Sacharomyces cerevisae, diverse mammalian cell lines, insect cells and whole plant and animals (as transgenic systems) are being incorporated to the protein production scenario [1], and many of these products have been already approved for use as protein drugs [2]. Other (less conventional) yeast species and a more limited number of species of filamentous fungi [3], molds [4], moss [5], algae [6] and protozoa [7] are also under development as potential suppliers of recombinant proteins. The engineering of such systems could represent a promising way to the cost effective production of high quality protein versions that biotechnology and biomedical industries are steadily demanding. The potential and versatility of these platforms as protein producers or in general, as cell factories for added value products such as chemicals, amino acids or vitamins has been stressed in recent experimental reports or reviews [8–17]. Despite this, it must be noted that adapting large-scale production processes to the biological complexity of some of these systems might represent, in some cases, an unaffordable task.

From a different angle, bacterial hosts others than E. coli are attracting attention as cell factories due to their metabolic diversity and biosynthetic potential derived from adaptation to extremely diverse environments. The most important bacterial groups explored as cell factories for recombinant proteins and their associated potentialities are summarized in Table 1. The implementation of lactic acid bacteria as a routine cell factory expands their applications from conventional food microbiology [18–21] to protein production and also protein drug display and delivery [22–29], taking advantage of the generically recognized as safe (GRAS) features of this platform. Improved solubility in halophillic and cold-adapted bacteria, enhanced secretion in acid lactic bacteria and in general in endotoxin-free gram-positive species and post-translational modifications in mycobacteria among others are highly appealing properties in protein production, that can be of special value for specific difficult-to-express proteins. While exhibiting most of the above mentioned limitations linked to prokaryotic-based production, exploring bacterial species other than E. coli should be not abandoned but fully supported as it will not only expand the current catalogue of cell factories but also offer novel process opportunities in easily cultivable/scalable systems that might pose, in generic terms, less methodological issues than unconventional protein production systems [30].

Table 1 The most important bacterial groups explored as cell factories for recombinant protein production

Towards a progressively more competitive biological synthesis by microbes [78] and assisted by expanding systems metabolic engineering and synthetic biology tools [79], industrial biotechnology should desirably find within the prokaryotic world, a growing spectrum of alternatives to eukaryotic cell factories, that apart from easy and cost-effective cultivation provide unexpectedly high metabolic versatility and biosafety of their protein-based products. In some cases and at a large extent, it is solving some of the main issues posed by E. coli as traditional producer or recombinant proteins.

References

  1. Sorensen HP: Towards universal systems for recombinant gene expression. Microb Cell Fact. 2010, 9: 27-10.1186/1475-2859-9-27.

    Article  Google Scholar 

  2. Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A: Microbial factories for recombinant pharmaceuticals. Microb Cell Fact. 2009, 8: 17-10.1186/1475-2859-8-17.

    Article  Google Scholar 

  3. Ward OP: Production of recombinant proteins by filamentous fungi. Biotechnol Adv. 2012, 30: 1119-1139. 10.1016/j.biotechadv.2011.09.012.

    Article  CAS  Google Scholar 

  4. Arya R, Bhattacharya A, Saini KS: Dictyostelium discoideum –a promising expression system for the production of eukaryotic proteins. FASEB J. 2008, 22: 4055-4066. 10.1096/fj.08-110544.

    Article  CAS  Google Scholar 

  5. Decker EL, Reski R: Moss bioreactors producing improved biopharmaceuticals. Curr Opin Biotechnol. 2007, 18: 393-398. 10.1016/j.copbio.2007.07.012.

    Article  CAS  Google Scholar 

  6. Potvin G, Zhang Z: Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv. 2010, 28: 910-918.

    Article  CAS  Google Scholar 

  7. LEXSY Biosafety Status. 2013, http://www.jenabioscience.com/cms/en/1/browse/1879_biosafety.html . 2013 Ref Type: Electronic Citation

  8. Porro D, Gasser B, Fossati T, Maurer M, Branduardi P, Sauer M, et al: Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems?. Appl Microbiol Biotechnol. 2011, 89: 939-948. 10.1007/s00253-010-3019-z.

    Article  CAS  Google Scholar 

  9. Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vazquez F, et al: Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv. 2013, 31: 140-153. 10.1016/j.biotechadv.2012.09.001.

    Article  CAS  Google Scholar 

  10. Mustalahti E, Saloheimo M, Joensuu JJ: Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology. N Biotechnol. 2011, 30: 262-268.

    Article  Google Scholar 

  11. Idiris A, Tohda H, Kumagai H, Takegawa K: Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol. 2010, 86: 403-417. 10.1007/s00253-010-2447-0.

    Article  CAS  Google Scholar 

  12. Decker EL, Reski R: Current achievements in the production of complex biopharmaceuticals with moss bioreactors. Bioprocess Biosyst Eng. 2008, 31: 3-9. 10.1007/s00449-007-0151-y.

    Article  CAS  Google Scholar 

  13. Gerngross TU: Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol. 2004, 22: 1409-1414. 10.1038/nbt1028.

    Article  CAS  Google Scholar 

  14. Spolaore P, Joannis-Cassan C, Duran E, Isambert A: Commercial applications of microalgae. J Biosci Bioeng. 2006, 101: 87-96. 10.1263/jbb.101.87.

    Article  CAS  Google Scholar 

  15. Rme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM: Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012, 11: 96-10.1186/1475-2859-11-96.

    Article  Google Scholar 

  16. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, et al: Microalgae as bioreactors for bioplastic production. Microb Cell Fact. 2011, 10: 81-10.1186/1475-2859-10-81.

    Article  CAS  Google Scholar 

  17. Specht E, Miyake-Stoner S, Mayfield S: Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett. 2010, 32: 1373-1383. 10.1007/s10529-010-0326-5.

    Article  CAS  Google Scholar 

  18. Rhee SJ, Lee JE, Lee CH: Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact. 2011, 10 (1): S5-10.1186/1475-2859-10-5.

    Article  Google Scholar 

  19. De Vos WM: Systems solutions by lactic acid bacteria: from paradigms to practice. Microb Cell Fact. 2011, 10 (1): S2-10.1186/1475-2859-10-2.

    Article  Google Scholar 

  20. Arendt EK, Moroni A, Zannini E: Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb Cell Fact. 2011, 10 (1): S15-10.1186/1475-2859-10-15.

    Article  Google Scholar 

  21. Teusink B, Bachmann H, Molenaar D: Systems biology of lactic acid bacteria: a critical review. Microb Cell Fact. 2011, 10 (1): S11-10.1186/1475-2859-10-11.

    Article  Google Scholar 

  22. Garcia-Fruitos E: Lactic Acid Bacteria: a promising alternative for recombinant protein production. Microb Cell Fact. 2012, 11: 157-10.1186/1475-2859-11-157.

    Article  CAS  Google Scholar 

  23. Peterbauer C, Maischberger T, Haltrich D: Food-grade gene expression in lactic acid bacteria. Biotechnol J. 2011, 6: 1147-1161. 10.1002/biot.201100034.

    Article  CAS  Google Scholar 

  24. Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, et al: Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008, 14: 48-58. 10.1159/000106082.

    Article  CAS  Google Scholar 

  25. Pontes DS, de Azevedo MS, Chatel JM, Langella P, Azevedo V, Miyoshi A: Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif. 2011, 79: 165-175. 10.1016/j.pep.2011.06.005.

    Article  CAS  Google Scholar 

  26. Daniel C, Roussel Y, Kleerebezem M, Pot B: Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 2011, 29: 499-508. 10.1016/j.tibtech.2011.05.002.

    Article  CAS  Google Scholar 

  27. Hu S, Kong J, Sun Z, Han L, Kong W, Yang P: Heterologous protein display on the cell surface of lactic acid bacteria mediated by the S-layer protein. Microb Cell Fact. 2011, 10: 86-10.1186/1475-2859-10-86.

    Article  CAS  Google Scholar 

  28. Bermudez-Humaran LG, Kharrat P, Chatel JM, Langella P: Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact. 2011, 10 (1): S4-10.1186/1475-2859-10-4.

    Article  Google Scholar 

  29. Scavone P, Miyoshi A, Rial A, Chabalgoity A, Langella P, Azevedo V, et al: Intranasal immunisation with recombinant lactococcus lactis displaying either anchored or secreted forms of proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes Infect. 2007, 9: 821-828. 10.1016/j.micinf.2007.02.023.

    Article  CAS  Google Scholar 

  30. Chen R: Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv. 2012, 30: 1102-1107. 10.1016/j.biotechadv.2011.09.013.

    Article  CAS  Google Scholar 

  31. Terpe K: Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003, 60: 523-533.

    Article  CAS  Google Scholar 

  32. Hahn HP, von Specht BU: Secretory delivery of recombinant proteins in attenuated salmonella strains: potential and limitations of type I protein transporters. FEMS Immunol Med Microbiol. 2003, 37: 87-98. 10.1016/S0928-8244(03)00092-0.

    Article  CAS  Google Scholar 

  33. Simon B, Nomellini J, Chiou P, Bingle W, Thornton J, Smit J, et al: Recombinant vaccines against infectious hematopoietic necrosis virus: production by the Caulobacter crescentus S-layer protein secretion system and evaluation in laboratory trials. Dis Aquat Organ. 2001, 44: 17-27.

    Article  CAS  Google Scholar 

  34. Duncan G, Tarling CA, Bingle WH, Nomellini JF, Yamage M, Dorocicz IR, et al: Evaluation of a new system for developing particulate enzymes based on the surface (S)-layer protein (RsaA) of Caulobacter crescentus: fusion with the beta-1,4-glycanase (Cex) from the cellulolytic bacterium Cellulomonas fimi yields a robust, catalytically active product. Appl Biochem Biotechnol. 2005, 127: 95-110. 10.1385/ABAB:127:2:095.

    Article  CAS  Google Scholar 

  35. Laible PD, Scott HN, Henry L, Hanson DK: Towards higher-throughput membrane protein production for structural genomics initiatives. J Struct Funct Genomics. 2004, 5: 167-172.

    Article  CAS  Google Scholar 

  36. Duilio A, Tutino ML, Marino G: Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol. 2004, 267: 225-237.

    CAS  Google Scholar 

  37. Rippa V, Papa R, Giuliani M, Pezzella C, Parrilli E, Tutino ML, et al: Regulated recombinant protein production in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Methods Mol Biol. 2012, 824: 203-218. 10.1007/978-1-61779-433-9_10.

    Article  CAS  Google Scholar 

  38. Giuliani M, Parrilli E, Ferrer P, Baumann K, Marino C, Tutino ML: Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochem. 2011, 46: 953-959. 10.1016/j.procbio.2011.01.011.

    Article  CAS  Google Scholar 

  39. Vigentini I, Merico A, Tutino ML, Compagno C, Marino G: Optimization of recombinant human nerve growth factor production in the psychrophilic Pseudoalteromonas haloplanktis. J Biotechnol. 2006, 127: 141-150. 10.1016/j.jbiotec.2006.05.019.

    Article  CAS  Google Scholar 

  40. Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, et al: Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol. 2007, 73: 4849-4856. 10.1128/AEM.00824-07.

    Article  CAS  Google Scholar 

  41. Retallack DM, Jin H, Chew L: Reliable protein production in a Pseudomonas fluorescens expression system. Protein Expr Purif. 2011, 81: 157-165.

    Article  Google Scholar 

  42. Jin H, Cantin GT, Maki S, Chew LC, Resnick SM, Ngai J, et al: Soluble periplasmic production of human granulocyte colony-stimulating factor (G-CSF) in Pseudomonas fluorescens. Protein Expr Purif. 2011, 78: 69-77. 10.1016/j.pep.2011.03.002.

    Article  CAS  Google Scholar 

  43. Dammeyer T, Steinwand M, Kruger SC, Dubel S, Hust M, Timmis KN: Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact. 2011, 10: 11-10.1186/1475-2859-10-11.

    Article  CAS  Google Scholar 

  44. Krzeslak J, Braun P, Voulhoux R, Cool RH, Quax WJ: Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa. J Biotechnol. 2009, 142: 250-258. 10.1016/j.jbiotec.2009.05.005.

    Article  CAS  Google Scholar 

  45. Tokunaga H, Arakawa T, Tokunaga M: Novel soluble expression technologies derived from unique properties of halophilic proteins. Appl Microbiol Biotechnol. 2010, 88: 1223-1231. 10.1007/s00253-010-2832-8.

    Article  CAS  Google Scholar 

  46. Nagayoshi C, Tokunaga H, Hayashi A, Harazono H, Hamasaki K, Ando A, et al: Efficient expression of haloarchaeal nucleoside diphosphate kinase via strong porin promoter in moderately halophilic bacteria. Protein Pept Lett. 2006, 13: 611-615. 10.2174/092986606777145760.

    Article  CAS  Google Scholar 

  47. Anne J, Maldonado B, Van IJ, Van ML, Bernaerts K: Recombinant protein production and streptomycetes. J Biotechnol. 2012, 158: 159-167. 10.1016/j.jbiotec.2011.06.028.

    Article  CAS  Google Scholar 

  48. Liu L, Yang H, Shin HD, Li J, Du G, Chen J: Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Appl Microbiol Biotechnol. 2013, 97: 9597-9608. 10.1007/s00253-013-5250-x.

    Article  CAS  Google Scholar 

  49. Ayala JC, Pimienta E, Rodriguez C, Anne J, Vallin C, Milanes MT, et al: Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J Microbiol Methods. 2013, 94: 192-198. 10.1016/j.mimet.2013.06.004.

    Article  CAS  Google Scholar 

  50. Chi WJ, Song JH, Oh EA, Park SW, Chang YK, Kim ES, et al: Medium optimization and application of an affinity column chromatography for streptomyces griseus trypsin production from the recombinant Streptomyces griseus. J Microbiol Biotechnol. 2009, 19: 1191-1196.

    Article  CAS  Google Scholar 

  51. Chary VK, de la Fuente JL, Leitao AL, Liras P, Martin JF: Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine-6-aminotransferase and up to two-fold increase in cephamycin C production. Appl Microbiol Biotechnol. 2000, 53: 282-288. 10.1007/s002530050022.

    Article  CAS  Google Scholar 

  52. Connell ND: Expression systems for use in actinomycetes and related organisms. Curr Opin Biotechnol. 2001, 12: 446-449. 10.1016/S0958-1669(00)00243-3.

    Article  CAS  Google Scholar 

  53. Guo XQ, Wei YM, Yu B: Recombinant Mycobacterium smegmatis expressing Hsp65-hIL-2 fusion protein and its influence on lymphocyte function in mice. Asian Pac J Trop Med. 2012, 5: 347-351. 10.1016/S1995-7645(12)60056-X.

    Article  CAS  Google Scholar 

  54. Noens EE, Williams C, Anandhakrishnan M, Poulsen C, Ehebauer MT, Wilmanns M: Improved mycobacterial protein production using a Mycobacterium smegmatis groEL1DeltaC expression strain. BMC Biotechnol. 2011, 11: 27-10.1186/1472-6750-11-27.

    Article  CAS  Google Scholar 

  55. Srivastava P, Deb JK: Gene expression systems in corynebacteria. Protein Expr Purif. 2005, 40: 221-229. 10.1016/j.pep.2004.06.017.

    Article  CAS  Google Scholar 

  56. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF: Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2008, 78: 67-74. 10.1007/s00253-007-1283-3.

    Article  CAS  Google Scholar 

  57. Itaya H, Kikuchi Y: Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl Microbiol Biotechnol. 2008, 78: 621-625. 10.1007/s00253-007-1340-y.

    Article  CAS  Google Scholar 

  58. Paradis FW, Warren RA, Kilburn DG, Miller RC: The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene. 1987, 61: 199-206. 10.1016/0378-1119(87)90114-4.

    Article  CAS  Google Scholar 

  59. van Dijl JM, Hecker M: Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact. 2013, 12: 3-10.1186/1475-2859-12-3.

    Article  CAS  Google Scholar 

  60. Terpe K: Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006, 72: 211-222. 10.1007/s00253-006-0465-8.

    Article  CAS  Google Scholar 

  61. Westers L, Westers H, Quax WJ: Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta. 2004, 1694: 299-310. 10.1016/j.bbamcr.2004.02.011.

    Article  CAS  Google Scholar 

  62. Pohl S, Harwood CR: Heterologous protein secretion by bacillus species from the cradle to the grave. Adv Appl Microbiol. 2010, 73: 1-25.

    Article  Google Scholar 

  63. Biedendieck R, Bunk B, Furch T, Franco-Lara E, Jahn M, Jahn D: Systems biology of recombinant protein production in bacillus megaterium. Adv Biochem Eng Biotechnol. 2010, 120: 133-161.

    CAS  Google Scholar 

  64. Schallmey M, Singh A, Ward OP: Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004, 50: 1-17. 10.1139/w03-076.

    Article  CAS  Google Scholar 

  65. Yang M, Zhang W, Ji S, Cao P, Chen Y, Zhao X: Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS One. 2013, 8: e56321-10.1371/journal.pone.0056321.

    Article  CAS  Google Scholar 

  66. Kajino T, Ohto C, Muramatsu M, Obata S, Udaka S, Yamada Y, et al: A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis. Appl Environ Microbiol. 2000, 66: 638-642. 10.1128/AEM.66.2.638-642.2000.

    Article  CAS  Google Scholar 

  67. Kajino T, Kato K, Miyazaki C, Asami O, Hirai M, Yamada Y, et al: Isolation of a protease-deficient mutant of Bacillus brevis and efficient secretion of a fungal protein disulfide isomerase by the mutant. J Biosci Bioeng. 1999, 87: 37-42. 10.1016/S1389-1723(99)80005-X.

    Article  CAS  Google Scholar 

  68. David F, Steinwand M, Hust M, Bohle K, Ross A, Dubel S, et al: Antibody production in Bacillus megaterium: strategies and physiological implications of scaling from micro titer plates to industrial bioreactors. Biotechnol J. 2011, 6: 1516-1531. 10.1002/biot.201000417.

    Article  CAS  Google Scholar 

  69. Toyokawa Y, Takahara H, Reungsang A, Fukuta M, Hachimine Y, Tachibana S, et al: Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl Microbiol Biotechnol. 2010, 86: 1867-1875. 10.1007/s00253-009-2434-5.

    Article  CAS  Google Scholar 

  70. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SA: Production and partial characterization of extracellular amylase enzyme from P-001. Springerplus. 2013, 2: 154-10.1186/2193-1801-2-154.

    Article  Google Scholar 

  71. Le LY, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, et al: Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact. 2005, 4: 2-10.1186/1475-2859-4-2.

    Article  Google Scholar 

  72. Innocentin S, Guimaraes V, Miyoshi A, Azevedo V, Langella P, Chatel JM, et al: Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Appl Environ Microbiol. 2009, 75: 4870-4878. 10.1128/AEM.00825-09.

    Article  CAS  Google Scholar 

  73. Miyoshi A, Bermudez-Humaran LG, Ribeiro LA, Le LY, Oliveira SC, Langella P, et al: Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact. 2006, 5: 14-10.1186/1475-2859-5-14.

    Article  Google Scholar 

  74. Nguyen TT, Nguyen HA, Arreola SL, Mlynek G, Djinovic-Carugo K, Mathiesen G, et al: Homodimeric beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J Agric Food Chem. 2012, 60: 1713-1721. 10.1021/jf203909e.

    Article  CAS  Google Scholar 

  75. Zhao LL, Liu M, Ge JW, Qiao XY, Li YJ, Liu DQ: Expression of infectious pancreatic necrosis virus (IPNV) VP2-VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts. Vaccine. 2012, 30: 1823-1829. 10.1016/j.vaccine.2011.12.132.

    Article  CAS  Google Scholar 

  76. Eom JE, Moon SK, Moon GS: Heterologous production of pediocin PA-1 in Lactobacillus reuteri. J Microbiol Biotechnol. 2010, 20: 1215-1218. 10.4014/jmb.1003.03026.

    Article  CAS  Google Scholar 

  77. Damelin LH, Mavri-Damelin D, Klaenhammer TR, Tiemessen CT: Plasmid transduction using bacteriophage Phi(adh) for expression of CC chemokines by Lactobacillus gasseri ADH. Appl Environ Microbiol. 2010, 76: 3878-3885. 10.1128/AEM.00139-10.

    Article  CAS  Google Scholar 

  78. Chen GQ: New challenges and opportunities for industrial biotechnology. Microb Cell Fact. 2012, 11: 111-10.1186/1475-2859-11-111.

    Article  CAS  Google Scholar 

  79. Lee SY, Mattanovich D, Villaverde A: Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact. 2012, 11: 156-10.1186/1475-2859-11-156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to MINECO (BFU2010-17450), AGAUR (2009SGR-0108) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, Spain) for funding our research on protein-based therapeutics and the Protein Production Platform (PPP). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. AV received an ICREA ACADEMIA award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Villaverde.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article

Ferrer-Miralles, N., Villaverde, A. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Fact 12, 113 (2013). https://doi.org/10.1186/1475-2859-12-113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1475-2859-12-113