Skip to main content

Current insights into the relationship between the gut microbiome and Sjögren’s syndrome

Dear editor,

With interest we read the recent publication by Mendez et al. [1] entitled ‘Gut microbial dysbiosis in individuals with Sjögren’s syndrome’ in which the authors report that individuals with dry eye signs have gut microbiome alterations compared to healthy controls. They conclude that their study sets the foundation for gut microbiome modulation as a potential therapeutic target for patients with dry eye measures.

The aim of the study by Mendez et al. [1] was to evaluate the gut microbiome in patients with dry eye, with or without SS and to correlate microbiome profiles to clinical parameters, in general only related with dry eye. In their cohort of 21 healthy controls and 21 patients with dry eye signs, only 13 patients with dry eyes (62%) fulfilled the 2016 American College of Rheumatology criteria for SS [2]. Although Mendez et al. shortly discuss the heterogeneity of their patient population as a limitation of their study, it is unclear whether the group of SS patients was composed of only primary SS (pSS) patients or of a combination of primary and secondary SS (sSS) patients. Four out of 13 (31%) SS patients in their study were male patients, whereas in pSS the female:male ratio is 10:1 [3]. Furthermore, 23% of their SS patients (3 out of 13) had a comorbid autoimmune disease, which may indicate that these patients had sSS. Unfortunately, Mendez et al. [1] do not mention which autoimmune comorbid diseases these three SS patients suffered from. The possible mixture of pSS and sSS patients in their SS-group may have influenced the findings in the gut microbiome of their SS patients. The comorbid autoimmune diseases mentioned in the study of Mendez et al. [1] (i.e., rheumatoid arthritis, systemic lupus erythematosus, psoriatric arthritis and systemic sclerosis) are on their own also related to changes in the gut microbiome [4]. Thus, their SS patient group is heterogeneous and not representative for the average pSS or sSS population in the United States or Europe [5]. In addition to this heterogeneity, comparison with healthy controls is hampered by the notion that controls were all male and were younger than the patient groups. Sex and age both affect the composition of the intestinal microbiota [6].

The main difference Mendez et al. [1] observed in the gut microbial composition of SS dry eye (SDE) patients and non-SS dry eye (NDE) patients compared with healthy controls was a significant difference in the Unweighted-Unifrac Principal coordinate analysis (PCoA). However, the gut microbial composition of SDE and NDE patients did not differ significantly, suggesting that the dysbiosis in gut microbial composition in SS patients is not disease specific, but, e.g., related to dry eye signs. It would be of interest to apply essential comparative statistics to support and substantiate the dysbiosis seen by PCoA.

Several studies analyzed the gut microbiome in pSS patients [6,7,8,9,10], but for some reason Mendez et al. limited the comparison of their data only to the study by de Paiva et al. [7]. Mendez et al. stated that a similar decrease in relative abundance of Faecalibacterium and Bacteroides was found in both studies [1, 7]. However, de Paiva et al. [7] performed a pilot study comparing the gut microbiome from 10 pSS patients with data from 45 samples of healthy individuals who participated in the Human Microbiome Project. Direct comparison of microbiome samples between two different cohorts is highly at risk for false positive findings, because of methodological differences between cohorts, ranging from fecal sampling to DNA analysis.

Two other studies on gut microbiome in pSS reported a statistically significant higher relative abundance of phylum Bacteroidetes in the gut microbiome of pSS patients compared to controls [6, 9]. The observed tendency of a lower relative abundance of genus Bacteroides in pSS patients compared to controls in the studies by Mendez et al. [1] and de Paiva et al. [7] was not statistically significant, and markedly contrasted our own study showing significantly higher relative abundance of genus Bacteroides in pSS patients (n = 39) than in population controls (n = 965) [6]. Furthermore, we were able to identify three Bacteroides species (i.e., B. vulgatus, B. uniformis and B. ovatus) of which the relative abundance was significantly higher in pSS patients than in population controls [6]. Another Bacteroides species, Bacteroides thetaiotaomicron (B. theta), showed a tendency to be higher in pSS patients than in controls [6]. B. theta has been suggested as a potential gut pathobiont (i.e., a potential pathogenic micro-organism, which, under normal circumstances, is harmless) in patients with anti-Ro60 auto-antibodies [11]. Lysates of B. theta bind to serum from anti-Ro60-positive patients with systemic lupus erythematosus. Furthermore, B and T cell responses to the Ro60-protein occurred after monocolonization of mice with B. theta, subsequently leading to enhanced lupus-like disease in mice [11]. Because anti-Ro60 autoantibodies are observed in up to 70% of pSS patients, the findings of Greiling et al. [11] may suggest a potential role for B. theta in the pathogenesis for pSS also. However, there is no evidence for an association between the presence of anti-Ro60 auto-antibodies in serum and B. theta relative abundance in fecal samples of pSS patients or patients with systemic lupus erythematosus [6, 11]. Thus, there is currently more evidence supporting that a higher rather than a lower relative abundance of Bacteroides species is related to having pSS [1, 6, 9, 11].

Taken together, we conclude that we are far beyond drawing more definite conclusions about possible roles of particular bacterial species or groups of bacteria in the pathogenesis of SS (and dry eye disease). Future studies assessing the role of the human microbiome in pSS patients, should significantly increase in number of well-defined pSS patients [6]. Bacterial compositions on the ocular surface and in the oral cavity have been associated with pSS. Therefore, future studies should include not only gut, but also oral and ocular microbiome samples to obtain a complete picture of the microbiome – pSS connection [12].

References

  1. Mendez R, Watane A, Farhangi M, et al. Gut microbial dysbiosis in individuals with Sjögren’s syndrome. Microb Cell Fact. 2020;19:90. https://doi.org/10.1186/s12934-020-01348-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shiboski CH, Shiboski SC, Seror R, et al. International Sjögren’s Syndrome Criteria Working Group 2016. American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis. 2017;76:9–16. https://doi.org/10.1136/annrheumdis-2016-210571.

    Article  PubMed  Google Scholar 

  3. Qin B, Wang J, Yang Z, et al. Epidemiology of Primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2014;74:1983–9. https://doi.org/10.1136/annrheumdis-2014-205375.

    Article  CAS  PubMed  Google Scholar 

  4. Manasson J, Blank RB, Scher JU. The microbiome in rheumatology: where are we and where should we go. Ann Rheum Dis. 2020. https://doi.org/10.1136/annrheumdis-2019-216631 (Epub ahead of print [24-4-2020]).

    Article  PubMed  Google Scholar 

  5. Brito-Zerón P, Acer-Denizli N, Zeher M, et al. Influence of geolocation and ethnicity on the phenotypic expression of primary Sjögren’s Syndrome at diagnosis in 8310 patients: a cross-sectional study from the big data Sjögren Project Consortium. Ann Rheum Dis. 2017;76:1042–50. https://doi.org/10.1136/annrheumdis-2016-209952.

    Article  PubMed  Google Scholar 

  6. van der Meulen TA, Harmsen HJM, Vila AV, et al. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J Autoimmun. 2019;97:77–87. https://doi.org/10.1016/j.jaut.2018.10.009.

    Article  PubMed  Google Scholar 

  7. de Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep. 2016;18;6:23561. https://doi.org/10.1038/srep23561.

    Article  CAS  Google Scholar 

  8. Mandl T, Marsal J, Olsson P, et al. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res Ther. 2017;19:237. https://doi.org/10.1186/s13075-017-1446-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moon J, Choi SH, Yoon CH, et al. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PLoS One. 2020;15:e0229029. https://doi.org/10.1371/journal.pone.0229029. eCollection 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellocchi C, Fernández-Ochoa Á, Montanelli G, et al. Identification of a shared microbiomic and metabolomic profile in systemic autoimmune diseases. J Clin Med. 2019;8:E1291. https://doi.org/10.3390/jcm8091291.

    Article  CAS  PubMed  Google Scholar 

  11. Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Science Transl Med. 2018;10:eaan2306. https://doi.org/10.1126/scitranslmed.aan2306.

    Article  CAS  Google Scholar 

  12. Van der Meulen TA, Vissink A, Bootsma H, et al. The microbiome in Sjögren’s syndrome: here we are. Ann Rheum Dis. 2020. https://doi.org/10.1136/annrheumdis-2020-218213.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not declared a specific Grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TAM, AV and FGMK were involved in the conception and drafting of the article. All authors (i.e., TAM, FGMK, HB, FKLS and AV) were involved in revising the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Taco A. van der Meulen.

Ethics declarations

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; internally peer reviewed.

Patient and public involvement

Patients and/or the public were not involved in the design, conduct, reporting or dissemination plans of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Meulen, T.A., Kroese, F.G.M., Bootsma, H. et al. Current insights into the relationship between the gut microbiome and Sjögren’s syndrome. Microb Cell Fact 19, 210 (2020). https://doi.org/10.1186/s12934-020-01471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12934-020-01471-5