Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P. Oddities and curiosities in the algal world. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P, editors. Algal toxins: nature, occurrence, effect and detection. Dordrecht: Springer; 2008. p. 353–91.
Chapter
Google Scholar
Das P, Aziz SS, Obbard JP. Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy. 2011;36(9):2524–8.
Article
CAS
Google Scholar
Brennan L, Owende P. Biofuels from microalgae- a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–77.
Article
CAS
Google Scholar
Plaza M, Herrero M, Cifuentes A, Ibanez E. Innovative natural functional ingredients from microalgae. J Argic Food Chem. 2009;57:7159–70.
Article
CAS
Google Scholar
Luiten EE, Akkerman I, Koulman A, Kamermans P, Reith H, Barbosa MJ, Sipkema D, Wijffels RH. Realizing the promises of marine biotechnology. Biomol Eng. 2003;20:429–39.
Article
CAS
Google Scholar
Michael A. Borowitzka high-value products from microalgae their development and commercialization. J Appl Phycol. 2013;25:743–56.
Article
CAS
Google Scholar
Pulz O, Gross G. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–48.
Article
CAS
Google Scholar
Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85:199–203.
CAS
Google Scholar
Ho SH, Chen WM, Chang G. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol. 2010;101(22):8725–30.
Article
CAS
Google Scholar
Paul Abishek M, Patel J, Prem Rajan A. Algae oil: a sustainable renewable fuel of future. Biotechnol Res Int. 2014;2014:272814. https://doi.org/10.1155/2014/272814.
Article
CAS
Google Scholar
Gendy TS, El-Temtamy SA. Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet. 2013;22:43–51.
Article
Google Scholar
Cerri CEP, You X, Cherubin MR, et al. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production. PLoS ONE. 2017;12(5):e0176948. https://doi.org/10.1371/journal.pone.0176948.
Article
CAS
Google Scholar
Formighieri C, Franck F, Bassi R. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol. 2012;162:115–23.
Article
CAS
Google Scholar
Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009;177:272–80.
Article
CAS
Google Scholar
Medipally SR, Yusoff FM, Banerjee S, Shariff M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int. 2015. https://doi.org/10.1155/2015/519513.
Google Scholar
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102:100–12.
Article
CAS
Google Scholar
Bchet Q, Munoz R, Shilton A, Guieysse B. Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnol Bioeng. 2013;110:118–26.
Article
CAS
Google Scholar
Park H, Lee C. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol J. 2016;11(11):1461–70. https://doi.org/10.1002/biot.201600041.
Article
CAS
Google Scholar
Pandey A. Microalgae biomass production for CO2 mitigation and biodiesel production. J Microbiol Exp. 2017;4(4):00117. https://doi.org/10.15406/jmen.2017.04.00117.
Google Scholar
Paniagua-Michel J, Farfan BC, Buckle Ramirez LF. Culture of marine microalgae with natural biodigested resources. Aquaculture. 2011;64:249–56.
Article
Google Scholar
Singh A, Ohlsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88:3548–55.
Article
CAS
Google Scholar
Zamora Castro JE, Paniagua-Michel J, Lezama- Cervantes C. A novel approach for bioremediation of a coastal marine wastewater effluent based on artificial microbial mats. Mar Biotechnol. 2008;10:181–9.
Article
CAS
Google Scholar
Gavrilescu M, Chisti Y. Biotechnology a sustainable alternative for chemical industry. Biotechnol Adv. 2005;23:471–99.
Article
CAS
Google Scholar
Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: challenges and potential. Biofuels. 2010;1(5):763–84.
Article
CAS
Google Scholar
Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
Article
CAS
Google Scholar
Powell EE, Hill GA. Economic assessment of an integrated bioethanol-biodiesel-microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Des. 2009;87(9):1340–8.
Article
CAS
Google Scholar
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2010;14(1):217–32.
Article
CAS
Google Scholar
Medipally SR, Fatimah M, Banerjee YS, Shariff M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int. 2015. https://doi.org/10.1155/2015/519513.
Google Scholar
Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biot. 2009;36:269–74.
Article
CAS
Google Scholar
Patil V, Tran KQ, Giselrød HR. Towards sustainable production of bio-fuels from microalgae. Int J Mol Sci. 2008;9:1188–95.
Article
CAS
Google Scholar
Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34(5):551–73.
Article
CAS
Google Scholar
Walker GM. Fuel alcohol: current production and future challenges. J Inst Brew. 2011;117(1):3–22.
Article
Google Scholar
Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95.
Article
CAS
Google Scholar
Jegannathan KR, Chan ES, Ravindra P. Harnessing biofuels: a global Renaissance in energy production? Renew Sustain Energy Rev. 2009;13(8):2163–8.
Article
CAS
Google Scholar
Bothast RJ, Schlicher MA. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol. 2005;67:19–25.
Article
CAS
Google Scholar
Basso LC, Basso TO, Rocha SN. Recent developments and prospects in biofuel production. In: Bernardes MA, editors. 2011. p. 85–100.
Goldemberg J. Ethanol for a sustainable energy future. Science. 2009;315:808–10.
Article
CAS
Google Scholar
Licht FO. World ethanol markets: the outlook to 2015. Agra Europe Special Report: Tunbridge Wells; 2006.
Google Scholar
Ueda R, Hirayama S, Sugata K, Nakayama H. Process for the production of ethanol from microalgae. US Patent 5,578,472; 1996.
Horn SJ, Aasen IM, Østgaard K. Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol. 2000;24:51–7.
Article
CAS
Google Scholar
Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF. An overview of the potential environmental impacts of large scale microalgae cultivation. Biofuels. 2014;5:331–49.
Article
CAS
Google Scholar
Mahlia TI, Razak HA, Nursahida MA. Life cycle cost analysis and payback period of lighting retrofit at the University of Malaya. J Renew Sustain Energy. 2011;15:1125–32.
Article
Google Scholar
Singh J, Gu S. Commercialization potential of microalgae for biofuels production. J Renew Sustain Energy. 2010;9(14):2596–610.
Article
CAS
Google Scholar
Gendy Tahani S, Seham A. El-temtamy commercialization potential aspects of microalgae for biofuel production: an overview. Egyptian J Pet. 2013;22:43–51.
Article
Google Scholar
Qari H, Rehan M, Nizami A-S. Key issues in microalgae biofuels: a short review. Energy Procedia. 2017;142:898–903.
Article
CAS
Google Scholar
Yusuf C, Yan G. Energy from algae: current status and future trends: algal biofuels—a status report. Appl Energy. 2011;88:3277–9.
Article
Google Scholar
Davis R, Kinchin C, Markham J, Tan ECD, Laurens LML. National Renewable Energy Laboratory. NREL Technical Report NREL/TP-5100-62368. 2014.
Duvall MN, Fraker RN. Algae-based biofuels attract incentives and investments. Washington, D.C.: Beveridge & Diamond, P.C.; 2009.
Google Scholar
Ozkurt I. Qualifying of safflower and algae for energy. Energy Educ Sci Tech. 2009;23:145–51.
CAS
Google Scholar
. Benemann J. Oswald W. Final report to the US Department of Energy. Grant No. DEFG22-93PC93204, Pittsburgh Energy Technology Center, USA; 1996.
Grobbelaar JU. Algal nutrition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell; 2004. p. 97–115.
Google Scholar
Adey WH, Luckett C, Smith M. Purification of industrially contaminated ground waters using controlled ecosystems. Ecol Eng. 1996;7(3):191–212.
Article
Google Scholar
Craggs RJ. Wastewater treatment by algal turf scrubbing. In: 7th international conference on wetland systems for water pollution control, Lake Buena Vista: I Wa Publishing; 2000.
Morales-Sánchez D, Martinez-Rodriguez OA, Martinez A. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J Chem Technol Biotechnol. 2017;92:925–36.
Article
CAS
Google Scholar
Park H, Jung D, Lee J, Kim P, Cho Y, Jung I, Kim Z-H, Lim S-M, Lee C-G. Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. J Appl Phycol. 2018. https://doi.org/10.1007/s10811-018-1388-3.
Google Scholar
Novoveska L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER. Optimizing microalgae cultivation and wastewater treatment in large-scale off shore photobioreactors. Algal Res. 2016;18:86–94.
Article
Google Scholar
Kim ZH, Park H, Lee CG. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J Microbiol Biotechnol. 2016;26:1098–102.
Article
CAS
Google Scholar
US Department of energy multi-year program plan. 2014. http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf.
Fuentes-Grunewald C, Garces E, Alacid E, Sampedro N, Rossi S, Camp J. Improvement of lipid production in the marine strains Heterosigma akashiwo and Alexandrium minutum utilizing abiotic parameters. J Ind Microbiol Biotechnol. 2012;39(1):207–16.
Article
CAS
Google Scholar
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev. 2010;14:217–32.
Article
CAS
Google Scholar
Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng. 2014;37(4):735–41. https://doi.org/10.1007/s00449-013-1044-x.
Article
CAS
Google Scholar
Huesemann MH, Van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds Biotechnol. Bioeng. 2013;110:1583–94.
Article
CAS
Google Scholar
Alabi AO, Tampier M, Bibeau E. Microalgae technologies and processes for biofuels bioenergy production in british columbia. Current technology, suitability and barriers to implementation. Final report submitted to The British Columbia innovation council. Cambridge: Seed Science Press; 2009.
Google Scholar
Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE. 2012;7(6):e38975. https://doi.org/10.1371/journal.pone.0038975.
Article
CAS
Google Scholar
Ye CP, Zhang MC, Yang YF, Thirumaran G. Photosynthetic performance in aquatic and terrestrial colonies of Nostoc flagelliforme (Cyanophyceae) under aquatic and aerial conditions. J Arid Environ. 2012;85:56–61.
Article
Google Scholar
Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–6.
Article
CAS
Google Scholar
Khoeyi Z, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae. Berlin: Springer; 2011.
Google Scholar
Jacob-Lopes E, Scoparo LMC, Lacerda F, Franco TT. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process. 2009;48(1):306–10.
Article
CAS
Google Scholar
Carvalho AP. Light requirements in microalgal photobioreactors. Berlin: Springer; 2010.
Google Scholar
Wu H. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res Int. 2016;2016:7383918. https://doi.org/10.1155/2016/7383918.
Google Scholar
Khan MI, Lee MG, Seo HJ, Shin JH, Shin TS, Yoon YH, Kim MY, Choi JI, Kim JD. Enhancing the feasibility of Microcystis aeruginosa as a feedstock for bioethanol production under the influence of various factors. Biomed Res Int. 2016;2016:4540826.
Google Scholar
Daliry S, Hallajisani A, Mohammadi Roshandeh J, Nouri H, Golzary A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J Environ Sci Manage. 2017;3(2):217–30.
Google Scholar
Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ. Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE. 2015;10(9):e0139061. https://doi.org/10.1371/journal.pone.0139061.
Article
CAS
Google Scholar
Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Adv Space Res. 2005;35(9):1584–8.
Article
CAS
Google Scholar
Bechet Q, Laviale M, Arsapin N, Bonnefond H, Bernard O. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnol Biofuels. 2017;10:136.
Article
Google Scholar
Singh SP, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew Sust Energy Rev. 2015;50:431–44.
Article
CAS
Google Scholar
Covarrubias Y, Cantoral-Uriza EA, Casas-Flores JS, García-Meza JV. Thermophile mats of microalgae growing on the woody structure of a cooling tower of a thermoelectric power plant in Central Mexico. Revista Mexicana de Biodiversidad. 2016;87:277–87.
Article
Google Scholar
Hu Q, Zhang CW, Sommerfeld M. Biodiesel from algae: lessons learned over the past 60 years and future perspectives. In: Annual meeting of the phycological society of America (Juneau); 2006. p. 0–41 (abstract).
Lee CG, Seong DH, Yim SM, Bae JH. A novel Tetraselmis sp. and method for preparing biodiesel with this strain. Korean Patent. 2015. 10–1509562
Bechet Q, Shilton A, Fringer OB, Munoz R, Guieysse B. Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol. 2010;44:2197–203.
Article
CAS
Google Scholar
Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% degrees C (− 1). Proc Biol Sci. 2003;270:2605–11.
Article
Google Scholar
Salvucci ME, Crafts-Brandner SJ. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol. 2004;134(4):1460–70.
Article
CAS
Google Scholar
Moller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence, or detoxification ability? Avian Poult Biol Rev. 2000;11:137–59.
Google Scholar
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process. 2009;48:1146–51.
Article
CAS
Google Scholar
Juneja A, Ceballos RM, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies. 2013;6:4607–38. https://doi.org/10.3390/en6094607.
Article
CAS
Google Scholar
Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28(1):64–70.
Article
Google Scholar
Gardner-Dale DA, Bradley IM, Guest JS. Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Res. 2017;121:231–9.
Article
CAS
Google Scholar
Bold HC, Wynne MJ. Introduction to the algae—structure and reproduction. Englewood Cliffs: Prentice-Hall Inc.; 1978. p. 706.
Google Scholar
Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem. 2006;67:696–701.
Article
CAS
Google Scholar
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–63.
Article
CAS
Google Scholar
Devi MP, Mohan SV. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol. 2012;112:116–23.
Article
CAS
Google Scholar
Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M. Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics. 2012. https://doi.org/10.1007/s11306-012-0463-z.
Google Scholar
Zhu L, Li Z, Ketola T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol Eng. 2011;37:1460–6.
Article
Google Scholar
Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi C-W, Chang J-S. A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci. 2017;18(1):215. https://doi.org/10.3390/ijms18010215.
Article
CAS
Google Scholar
Zeng X, Danquah MK, Chen XD, Lu Y. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustainable Energy Rev. 2011;15:3252–60.
Article
CAS
Google Scholar
Lam MK, Lee KT. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl Energy. 2012;94:303–8.
Article
CAS
Google Scholar
Dragone G, Fernandes B, Vicente A, Teixeira JA. Third generation biofuels from microalgae, current research, technology and education. Appl Microbiol Biotechnol. 2010;2:1355–66.
Google Scholar
Ceron Garcia MC, Sanchez Miron A, Fernandez Sevilla JM, Molina Grima E, Garcia Camacho F. Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem. 2005;40(1):297–305.
Article
CAS
Google Scholar
Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref. 2009;3:431–40.
Article
CAS
Google Scholar
Ho SH, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalgae Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–52.
Article
CAS
Google Scholar
Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH, Peltier G. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11(1):7.
Article
CAS
Google Scholar
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol. 2013;17:489–95.
Article
CAS
Google Scholar
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM. Atsumi S synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev. 2013;113:4611–32.
Article
CAS
Google Scholar
Jonsson LJ, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.
Article
CAS
Google Scholar
Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101:4851–61.
Article
CAS
Google Scholar
Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol. 2007;108:67–93.
CAS
Google Scholar
Rajarapu SP, Scharf ME. Saccharification of agricultural lignocellulose feedstocks and protein-level responses by a termite gut-microbe bioreactor. Front Energy Res. 2017;5:5.
Article
Google Scholar
Grima EM, Gonzalez MJI, Gimenez AG. Solvent extraction for microalgae lipids. In: Borowitzka MA, Moheimani NR, editors. Algae for biofuels and energy, vol 5. Netherlands: Springer; 2013. p. 187–205.
Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32.
Article
CAS
Google Scholar
Doan Q, Moheimani N, Mastrangelo A, Lewis D. Microalgal biomass for bioethanol fermentation: implications for hypersaline systems with an industrial focus. Biomass Bioenergy. 2012;46:79–88.
Article
CAS
Google Scholar
Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A. Chang JS Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191–8.
Article
CAS
Google Scholar
Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy. 2011;36(21):13997–4003.
Article
CAS
Google Scholar
Park JH, Cheon HC, Yoon JJ, Park HD, Kim SH. Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass. Int J Hydrogen Energy. 2013;38(14):6130–6.
Article
CAS
Google Scholar
Passos F, Hernandez-Marine M, Garcia J, Ferrer I. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 2014;49:351–9.
Article
CAS
Google Scholar
Zhao G, Chen X, Wang L, Zhou S, Feng H, Chen WN, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresour Technol. 2013;128:337–44.
Article
CAS
Google Scholar
Goettel M, Eing C, Gusbeth C, Straessner R, Frey W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res. 2013;2(4):401–8.
Article
Google Scholar
Sheng J, Vannela R, Rittmann BE. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol. 2011;45(8):3795–802.
Article
CAS
Google Scholar
Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101(14):5330–6.
Article
CAS
Google Scholar
Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 2011;46(11):2111–6.
Article
CAS
Google Scholar
Chen CY, Bai MD, Chang JS. Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochem Eng J. 2013;81:170–6.
Article
CAS
Google Scholar
Cardona CA, Sanchez OJ. Fuel ethanol production: process design trends and integration opportunities. Biores Technol. 2007;98(12):2415–57.
Article
CAS
Google Scholar
Deesuth O, Laopaiboon P, Jaisil P, Laopaiboon P. Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies. 2012;5(9):3178–97.
Article
CAS
Google Scholar
Maruthai K, Thangavelu V, Kanagasabai M. Statistical screening of medium components on ethanol production from cashew apple juice using Saccharomyces Diasticus. Intl J Chem Biol Eng. 2012;6:108–11.
CAS
Google Scholar
Nonklang BA, Abdel-Banat K, Cha-aim K, et al. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol. 2008;74(24):7514–21.
Article
CAS
Google Scholar
da Silva GP, de Araújo EF, Silva DO, Guimarães WV. Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2”. Braz J Microbiol. 2005;36(4):395–404.
Article
Google Scholar
Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour Technol. 2008;99(4):847–54.
Article
CAS
Google Scholar
Lin Y, Zhang W, Li C, Sakakibara K, Tanaka K, Kong H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy. 2012;47:395–401.
Article
CAS
Google Scholar
Kasemets K, Nisamedtinov I, Laht TM, Abner K, Paalme T. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Antonie Van Leeuwenhoek. 2007;92(1):109–28.
Article
CAS
Google Scholar
Louhichi B, Belgaib J, Benamor H, Hajji N. Production of bio-ethanol from three varieties of dates. Renew Energy. 2013;51:170–4.
Article
CAS
Google Scholar
Nadir N, Mel M, Karim MA, Yunus RM. Comparison of sweet sorghum and cassava for ethanol production by using Saccharomyces cerevisiae. J Appl Sci. 2009;9(17):3068–73.
Article
CAS
Google Scholar
Al Abdallah Q, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res. 2016. https://doi.org/10.3389/fenrg.2016.00036.
Google Scholar
Chng LM, Lee KT, Chan DJ. Evaluation on microalgae biomass for bioethanol production. Mater Sci Eng A. 2017;206:12–8.
Google Scholar
Sivaramakrishnan R, Incharoensakdi A. Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel. 2018;217:458–66.
Article
CAS
Google Scholar
Khan MI, Lee MG, Shin JH, Kim JD. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production. AMB Express. 2017;7:19.
Article
CAS
Google Scholar
Jensen GS, Ginsberg DI, Drapeau MS. Bluegreen algae as an immuno-enhancer and biomodulator. J Am Nutraceutical Assoc. 2001;3:24–30.
Google Scholar
Borowitzka MA. Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge: Cambridge University Press; 1998. p. 153–96.
Google Scholar
Becker W. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 312–51.
Google Scholar
Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol. 1995;7:3–15.
Article
CAS
Google Scholar
Cornet JF. Le technoscopeles photobioreacteurs. Biofutur. 1998;176:1–10.
Google Scholar
Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.
Article
CAS
Google Scholar
Iwamoto H. Industrial production of microalgal cell-mass and secondary products major industrial species Chlorella. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell; 2004. p. 255–63.
Google Scholar
Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8:190–209.
Article
CAS
Google Scholar
Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture. 2005;243:217–24.
Article
CAS
Google Scholar
Guil-Guerrero JL, Navarro-Juarez R, Lopez-Martinez JC, Campra-Madrid P, Rebolloso-Fuentes MM. Functionnal properties of the biomass of three microalgal species. J Food Eng. 2004;65:511–7.
Article
Google Scholar
Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. High protein- and high lipid-producing microalgae from northern australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol. 2015;3:53. https://doi.org/10.3389/fbioe.2015.00053.
Article
Google Scholar
Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57:287–93.
Article
CAS
Google Scholar
Vijayavel K, Anbuselvam C, Balasubramanian MP. Antioxidant effect of the marine Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem. 2007;303:39–44.
Article
CAS
Google Scholar
Adame-Vega C, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbiol Cell Fact. 2011;11:1–11.
Article
CAS
Google Scholar
Liang S, Xueming L, Chen F, Chen Z. Current microalgal health food R&D activities in China. Hydrobiologia. 2004;512:45–8.
Article
Google Scholar
Gonzalez LE, Diaz GC, Aranda DA, Cruz YR, Fortes MM. Biodiesel production based in microalgae: a biorefinery approach. Nat Sci. 2015;7:358–69.
CAS
Google Scholar
Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol. 2014;50:229–42.
Article
CAS
Google Scholar
Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PA, et al. A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–36.
Article
CAS
Google Scholar
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77.
Article
CAS
Google Scholar
Rastogi RP, Madamwar D, Incharoensakdi A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front Microbiol. 2015;6:1254. https://doi.org/10.3389/fmicb.2015.01254.
Article
Google Scholar
Boopathi T, Ki J-S. Impact of environmental factors on the regulation of cyanotoxin production. Toxins. 2014;6(7):1951–78. https://doi.org/10.3390/toxins6071951.
Article
CAS
Google Scholar
Henriquez V, Escobar C, Galarza J, Gimpel J. Carotenoids in microalgae. In: Stange C, editor. Carotenoids in nature. Subcellular biochemistry, vol. 79. Cham: Springer; 2016.
Google Scholar
Zhang D, Wan M, del Rio-Chanona EA, Huang J, Wang W, Li Y, Vassiliadis VS. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Res. 2016;13:69–78.
Article
Google Scholar
Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 2011;45(1):11–36.
Article
CAS
Google Scholar
Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Ind J Plant Physiol. 2014;19(2):184–8. https://doi.org/10.1007/s40502-014-0094-7.
Article
Google Scholar
Datla P. The wonder molecule called phycocyanin. Chennai—India: Parry Nutraceuticals; 2011. http://www.valensa.com/images3/Phycocyanin_The%20Wonder%20Molecule.pdf. Accessed 5 July 2013.
Sathasivam R, Juntawong N. Modified medium for enhanced growth of Dunaliella strains. Int J Curr Sci. 2013;5:67–73.
Google Scholar
Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci. 2017. https://doi.org/10.1016/j.sjbs.2017.11.003.
Google Scholar
Raposo MFJ, Mendes-Pinto MM, Morais R. Carotenoids, foodstuff and human health. In: Morais R, editor. Functional foods an introductory course. Porto: Universidade Católica Portuguesa—Escola Superior de Biotecnologia; 2001.
Google Scholar
Chidambara-Murthy KN, Vanitha A, Rajesha J, Mahadeva-Swamy M, Sowmya PR, Ravishankar GA. In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci. 2005;76:1382–90.
Google Scholar
Lin J, Huang L, Yu J, Xiang S, Wang J, Zhang J, Yan X, Cui W, He S, Wang Q. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar Drugs. 2016;14:67.
Article
CAS
Google Scholar
Cuvelier M-E. Antioxidants. In: Morais R, editor. Functional foods: an introductory course. Portugal: Escola Superior de Biotecnologia/UCP; 2001. p. 97–108.
Google Scholar
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.
Article
CAS
Google Scholar
Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74. https://doi.org/10.2174/157015909787602823.
Article
CAS
Google Scholar
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.
CAS
Google Scholar
Demming-Adams B, Adams WW. Antioxidants in photosynthesis and human nutrition. Science. 2002;298:2149–53.
Article
CAS
Google Scholar
Devaraj S, Jialal I. Vega-Lopez. Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler Thromb Vasc Biol. 2004;24:25–8.
Article
CAS
Google Scholar
Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M. Liver X receptor β (LXRβ): a link between β-sitosterol and amyotrophic lateral sclerosis—Parkinson’s dementia Proc. Natl Acad Sci USA. 2008;105(6):2094–9.
Article
CAS
Google Scholar
Fernandes P, Cabral JM. Phytosterols: applications and recovery methods. Bioresour Technol. 2007;98(12):2335–50.
Article
CAS
Google Scholar
Srigley CT, Haile EA. Quantification of plant sterols/stanols in foods and dietary supplements containing added phytosterols. J Food Compos Anal. 2015;40:163–76. https://doi.org/10.1016/j.jfca.2015.01.008.
Article
CAS
Google Scholar
Luo X, Su P, Zhang W. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar Drugs. 2015;13(7):4231–54. https://doi.org/10.3390/md13074231.
Article
CAS
Google Scholar
Volkman JK. A review of sterol markers for marine and terrigenous organic matter. Org Geochem. 1996;9:83–99.
Article
Google Scholar
Santhosh S, Dhandapani R, Hemalatha R. Bioactive compounds from Microalgae and its different applications—a review. Adv Appl Sci Res. 2016;7(4):153–8.
CAS
Google Scholar
Volkman JK. Sterols in microalgae. In: Borowitzka M, Beardall J, Raven J, editors. The physiology of microalgae. Developments in applied phycology, vol. 6. Cham: Springer; 2016.
Google Scholar
Ahmed F, Zhou W, Schenk PM. Pavlova lutheri is a high-level producer of phytosterols. Algal Res. 2015;10:210–7.
Article
Google Scholar
. Zhang Y. Sterols in Microalgae: Euglena gracilis and Selenastrum sp. master’s thesis University of Helsinki, Faculty of Agriculture and Forestry, Department of Food and Environmental Sciences.
Leblond JD, Timofte HI, Roche SA, Porter NM. Sterols of glaucocystophytes. Phycol Res. 2011;59:129–34.
Article
CAS
Google Scholar
Volkman JK. sterols in microorganisms. Appl Microbiol Biotechnol. 2003;60(5):495–506.
Article
CAS
Google Scholar
Thomson PG, Wright SW, Bolch CJS, Nichols PD, Skerratt JH, McMinn A. Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae). J Phycol. 2004;40:867–73.
Article
CAS
Google Scholar
Giner JL, Zhao H, Boyer GL, Satchwell MF, Andersen RA. Sterol chemotaxonomy of marine pelagophyte algae. Chem Biodiv. 2009;6(7):1111–30.
Article
CAS
Google Scholar
Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra N. Microalgae in novel food products. In: Konstantinos N, Papadopoulos PP, editors. food chemistry research development. New York: Nova Science Publishers; 2008. p. 75–112.
Google Scholar
Bleakley Stephen, Proteins Maria Hayes Algal. Extraction, application, and challenges concerning production. Foods. 2017;6:33. https://doi.org/10.3390/foods6050033.
Article
Google Scholar
Smee DF, Bailey KW, Wong MH, et al. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antivir Res. 2008;80(3):266–71.
Article
CAS
Google Scholar
Arya V, Gupta VK. A review on marine immunomodulators. Int J PharmLife Sci. 2001;2(5):751–8.
Google Scholar
Zappe H, Snell ME, Bossard MJ. PEGylation of cyanovirin-N, an entry inhibitor of HIV. Adv Drug Deliv Rev. 2008;60(1):79–87.
Article
CAS
Google Scholar
Bannenberg G, Mallon C, Edwards H, Yeadon D, Yan K, Johnson H, Ismail A. Omega-3 long-chain polyunsaturated fatty acid content and oxidation state of fish oil supplements in New Zealand. Scientific Reports. 2017;7:1488.
Article
CAS
Google Scholar
Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA. 2002;287:1815–21.
Article
CAS
Google Scholar
. Guedes ACA. Production, extraction and characterization of selected metabolites from microalgae and cyanobacteria. Ph.D. Thesis Porto,: Escola Superior de Biotecnologia, Universidade Católica Portuguesa; 2010.
Sarrobert B, Dermoun D. Extraction et valorisation de molecules à haute valeur ajoutée chez la microalgae Porphyridium cruentum. Premier Colloque Scientifique Français sur la Biotechnologie des Microalgues et des Cyanobacteries Appliquée au Thermalisme, vol. 24. France: Centre d’Études Nucléaires de Cadarache; 2008. p. 109–14.
Google Scholar
Armenta RE, Valentine MC. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. J Am Oil Chem Soc. 2013;90:167–82.
Article
CAS
Google Scholar
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acid production. Curr Opin Biotechnol. 2014;26:14–8.
Article
CAS
Google Scholar
Hamilton M, Haslam R, Napier J, Sayanova O. Metabolic engineering of microalgae for enhanced production of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9.
Article
CAS
Google Scholar
Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ. Food commodities from microalgae. Curr Opin Biotechnol. 2013;24:169–77.
Article
CAS
Google Scholar
Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6:52–63.
Article
Google Scholar
Chauton MS, Kjell IR, Niels HN, Ragnar T, Hans TK. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015;436:95–103.
Article
CAS
Google Scholar
Hamilton ML, Powers S, Napier JA, Sayanova O. Heterotrophic production of omega-3 long-chain Polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs. 2016;14:53.
Article
CAS
Google Scholar
Wen Z-Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv. 2003;21:273–94.
Article
CAS
Google Scholar
Yongmanitchai W, Ward O. Growth and omega-3 fatty acid production by the Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 1991;57:419–25.
CAS
Google Scholar
Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, et al. Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol. 2012;24(5):1311–20.
Article
CAS
Google Scholar
Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, et al. Physiological and molecular analysis of carbon source supplementation and pH stress- induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol. 2013;97:3625–42.
Article
CAS
Google Scholar
Hosseini Tafreshi A, Shariati M. Dunaliella biotechnology: methods and applications. J Appl Microbiol. 2009;107(1):14–35.
Article
CAS
Google Scholar
Jungblut AD, Neilan BA. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch Microbiol. 2006;185:107–14.
Article
CAS
Google Scholar
Ahmed WA, El-Semary NA, Abd El-Hameed OM, El Tawill G, Ibrahim DM. Bioactivity and cytotoxic effect of cyanobacterial toxin against hepatocellular carcinoma. J Cancer Sci Ther. 2017;9:505–11.
Google Scholar
Vijayakumar S, Menakha M. Pharmaceutical applications of cyanobacteria—a review. J Acute Med. 2015;5:15–23.
Article
Google Scholar
Blaha L, Pavel B, Blahoskav M. Toxins produced in cyanobacterial water blooms—toxicity and risks. Interdiscip Toxicol. 2009;2:36–41.
Article
Google Scholar
Ferrao-Filho AS, Kozlowsky-Suzuki B. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs. 2011;12:2729–72.
Article
CAS
Google Scholar
Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria—a prolific source of natural products. Tetrahedron. 2001;57(46):9347–77.
Article
CAS
Google Scholar
Volk R-B, Furkert FH. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res. 2006;161:180–6.
Article
CAS
Google Scholar
Mos Lizzy. Domoic acid: a fascinating marine toxin. Environ Toxicol Pharmacol. 2001;9:79–85.
Article
CAS
Google Scholar
Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents (review). Lancet Infect Dis. 2003;3:338–48.
Article
CAS
Google Scholar
Washida K, Koyama T, Yamada K, Kitab M, Urmura D, et al. Karatungiols A and B two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2006;47(15):2521–5.
Article
CAS
Google Scholar
Ngo DN, Kim MM, Kim SK. Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym. 2006;74:228–34.
Article
CAS
Google Scholar
Je JY, Park PJ, Kim SK. Antioxidant activity of a peptide isolated from Alaska pollock (Theragra chalcogramma) frame protein hydrolysate. Food Res Int. 2005;38:45–50.
Article
CAS
Google Scholar
Pena-Ramos E, Xiong Y. Antioxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci. 2001;84:2577–83.
Article
CAS
Google Scholar
Cornish M, Garbary D. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae. 2010;25:155–71.
Article
CAS
Google Scholar
Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol. 1998;10(2):121.
Article
Google Scholar
Cho M, Lee H, Kang I, Won M, You S. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem. 2011;127:999–1006.
Article
CAS
Google Scholar
Sachindra N, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Agric Food Chem. 2007;55:8516–22.
Article
CAS
Google Scholar
Ravi Kumar S, Narayan B, Vallikannan B. Fucoxanthin restrains oxidative stress induced by retinol deficiency through modulation of Na + Ka + -ATPase and antioxidant enzyme activities in rats. Eur J Nutr. 2008;47:432–41.
Article
CAS
Google Scholar
Sangeetha R, Bhaskar N, Baskaran V. Comparative effects of b-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem. 2009;331:59–67.
Article
CAS
Google Scholar
Heo S, Ko S, Kang S, Kang H, Kim J, Kim S, et al. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur Food Res Technol A. 2008;228:145–51.
Article
CAS
Google Scholar
Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol. 2008;20:113–36.
Article
Google Scholar
Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Wata-nabe F. Antioxidant activity of the phycoeryth-robilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res. 2010;16:347–51.
Article
CAS
Google Scholar
Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.
Article
CAS
Google Scholar
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherhosclerosis. J Dermatol Sci. 2011;63:1–9.
Article
CAS
Google Scholar
Cherrington JM, Strawn LM, Shawver LK. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res. 2000;79:1–38.
Article
CAS
Google Scholar
JrR Roskoski. Vascular endothelial growth factor (VEGF) signaling in tumour progression. Crit Rev Oncol Hematol. 2007;62:179–213.
Article
Google Scholar
Emanueli C, Salis MB, Stacca T, Pinna A, Gaspa L, Madeddu P. Angiotensin AT (1) receptor signaling modulates reparative angiogenesis induced by limb ischemia. Br J Pharmacol. 2002;135:87–92.
Article
CAS
Google Scholar
Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T. Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Agric Food Chem. 2006;54:9805–10.
Article
CAS
Google Scholar
Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine. 2010;17:1140–4.
Article
CAS
Google Scholar
Tsukui T, Baba N, Hosokawa M, Sashima T, Miyashit K. Enhancement of hepatic docosahexaenoic acid and arachidonic acid contents in C57BL/6J mice by dietary fucoxanthin. Fish Sci. 2009;75:261–3.
Article
CAS
Google Scholar
Shimoda H, Tanaka J, Shan S, Maoka T. Antipigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol. 2010;62:1137–45.
Article
CAS
Google Scholar
Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B. 2009;95:101–7.
Article
CAS
Google Scholar
Pen S, Scarone L, Manta E, Stewart L, Yardley V, et al. Synthesis of a Microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorg Med Chem Lett. 2012;22(15):4994–7.
Article
CAS
Google Scholar
Russo P, Cesario A. New anticancer drugs from marine cyanobacteria. Curr Drug Targets. 2012;13(8):1048–53.
Article
CAS
Google Scholar
Martins RF, Ramos MF, Herfindal L, Sousa JA, Skaerven K, Vasconcelos VM. Antimicrobial and cytotoxic assessment of marine cyanobacteria-Synechocystis and Synechococcus. Mar Drugs. 2008;6(1):1–11.
Article
CAS
Google Scholar
Sivonen K, Leikoski N, Fewer DP, Jokela J. Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. App Microbiol Biotechnol. 2010;86(5):1213–25.
Article
CAS
Google Scholar
Zhang JY. Apoptosis-based anticancer drugs. Nat Rev Drug Discov. 2002;1:101–2.
Article
CAS
Google Scholar
Yonezawa T, Mase N, Sasaki H, Teruya T, Hasegawa S, Cha BY, Yagasaki K, Suenaga K, Nagai K, Woo JT. Biselyngbyaside, isolated from marine cyanobacteria, inhibits osteoclastogenesis and induces apoptosis in mature osteoclasts. J Cell Biochem. 2012;113:440–8.
Article
CAS
Google Scholar
Oftedal L, Selheim F, Wahlsten M, Sivonen K, Doskeland SO, Herfindal L. Marine benthic cyanobacteria contain apoptosis-inducing activity synergizing with daunorubicin to kill leukemia cells, but not cardiomyocytes. Mar Drugs. 2010;8:2659–72.
Article
CAS
Google Scholar
Singh RK, Tiwari SP, Rai AK, Mohapatra TM. Cyanobacteria: an emerging source for drug discovery. J Antibiot. 2011;64:401–12.
Article
CAS
Google Scholar
Nair S, Bhimba BV. Bioactive potency of cyanobacteria Oscillatoria spp. Int J Pharm Pharm Sci. 2013;5:611–2.
Google Scholar
Welker M, von Döhren H. Cyanobacterial peptides-nature’s own combinatorial biosynthesis. FEMS Microbiol Rev. 2006;30:530–63.
Article
CAS
Google Scholar
Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol. 2009;47(10):2401–6.
Article
CAS
Google Scholar
Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.
Article
CAS
Google Scholar
Wang H, Peiris TH, Mowery A, Le Lay J, Gao Y, Greenbaum LE. CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1alpha in the regenerating liver. Mol Endocrinol. 2008;22:1596–605.
Article
CAS
Google Scholar
Hayato M, Masashi H, Tokutake S, Nobuyuk T, Teruo K, Kazuo M. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med. 2006;18:147–52.
Google Scholar
Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J Oleo Sci. 2008;57(6):345–51.
Article
CAS
Google Scholar
Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem. 2007;55:7701–6.
Article
CAS
Google Scholar
Miyashita K. Anti-obesity therapy by food component: unique activity of marine carotenoid, fucoxanthin. Obes Control Ther. 2014;1(1):4. https://doi.org/10.15226/2374-8354/1/1/00103.
Google Scholar
Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010;12:72–81.
Article
CAS
Google Scholar
Kim SM, Jung YH, Kwon O, Cha KH, Um BH. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012;166:1843–55.
Article
CAS
Google Scholar
Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci. 2007;56(12):615–21.
Article
CAS
Google Scholar
Khalid MN, Shameel M, Ahmad VU, Shahzad S, Leghari SM. Studies on the bioactivity and phycochemistry of Microcystis aeruginosa (Cyanophycota) from Sindh. Pak J Bot. 2010;42:2635–46.
Google Scholar
Mendiola JA, Santoyo S, Cifuentes A, Reglero G, Ibanez E, Senorans FJ. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot. 2008;71:2138–43.
Article
CAS
Google Scholar
Pane G, Cacciola G, Giacco E, Mariottini GL, Coppo E. Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external Otitis. Marine Drugs. 2015;13(10):6440–52. https://doi.org/10.3390/md13106440.
Article
CAS
Google Scholar