Kolter R. Biofilms in lab and nature: a molecular geneticist’s voyage to microbial ecology. Int Microbiol. 2010;13:1–7.
Google Scholar
Sachs JL, Hollowed AC. The origins of cooperative bacterial communities. mBio. 2012. doi:10.1128/mBio.00099-12.
Google Scholar
Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015. doi:10.1093/femsre/fuv015.
Google Scholar
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995. doi:10.1146/annurev.mi.49.100195.003431.
Google Scholar
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. 2013. doi:10.1038/nrmicro2960.
Google Scholar
Rollet C, Gal L, Guzzo J. Biofilm-detached cells, a transition from a sessile to planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2009. doi:10.1111/j.1574-6968.2008.01415.
Google Scholar
Peter H, Ylla I, Gudasz C, Romani AM, Sabater S, Tranvik LJ. Multifunctionality and diversity in bacterial biofilms. PLoS ONE. 2011. doi:10.1371/journal.pone.0023225.
Google Scholar
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2009. doi:10.1007/s10295-007-0234-4.
Google Scholar
Petrova OE, Sauer K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol. 2016. doi:10.1016/j.mib.2016.01.004.
Google Scholar
Matz C, Kjelleberg S. Off the hook—how bacteria survive protozoan grazing. Trends Microbiol. 2005;13:302–7.
Article
CAS
Google Scholar
Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014. doi:10.1038/ismej.2013.194.
Google Scholar
Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. Interactions in multiespecies biofilms: do they actually matter? Trends Microbiol. 2014. doi:10.1016/j.tim.2013.12.004.
Google Scholar
Young KD. The selective value of bacterial shape. Microbiol Mol Biol Rev. 2006;70:660–703.
Article
Google Scholar
Martin M, Hölscher T, Dragos A, Cooper VS, Kovács AT. Laboratory evolution of microbial interactions in bacterial biofilms. J Bacteriol. 2016. doi:10.1128/JB.01018-15.
Google Scholar
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010. doi:10.1038/nrmicro2415.
Google Scholar
Merod RT, Wuertz S. Extracellular polymeric substance architecture influences natural genetic transformation of Acinetobacter baylyi in biofilms. Appl Environ Microbiol. 2014;80:7752–7.
Article
CAS
Google Scholar
Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Hernan L, Boon N. Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis. 2014;70:332–8.
Article
CAS
Google Scholar
Kouzel N, Oldewurtel ER, Maier B. Gene transfer efficiency in gonococcal biofilms: role of biofilm age, architecture, and pilin antigenic variation. J Bacteriol. 2015;197:2422–31.
Article
CAS
Google Scholar
Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016. doi:10.1038/ncomms11220.
Google Scholar
Guerrero R, Berlanga M. From the cell to the ecosystem: the physiological evolution of symbiosis. Evol Biol. 2015. doi:10.1007/s11692-015-9360-5.
Google Scholar
Guerrero R, Piqueras M, Berlanga M. Microbial mats and the search for minimal ecosystems. Int Microbiol. 2002;5:177–88.
Article
CAS
Google Scholar
Van Gestel J, Vlamakis H, Kolter R. Division of labor in biofilms: the ecology of cell differentiation. Microbiol Spectr. 2015. doi:10.1128/microbiolspec.MB-0002-2014.
Google Scholar
Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6:199–210. doi:10.1038/nrmicro1838.
Article
CAS
Google Scholar
Berlanga M, Guerrero R. The holobiont concept: the case of xylophagous termites and cockroaches. Symbiosis. 2016. doi:10.1007/s13199-016-0388-9.
Google Scholar
Zhang W, Li C. Exploring quorum sensing interfering strategies in Gram-negative bacteria for the enhancement of environmental applications. Front Microbiol. 2016. doi:10.3389/fmicb.2015.01535.
Google Scholar
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum sensing quenching: role in nature and applied developments. FEMS Microbiol Rev. 2016. doi:10.1093/femsre/fuv038.
Google Scholar
Araújo PA, Mergulhão F, Melo L, Simões M. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling. 2014. doi:10.1080/08927014.2014.904294.
Google Scholar
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard J-C, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2014. doi:10.1016/j.fm.2014.04.015.
Google Scholar
Bryers JD. Medial biofilms. Biotechnol Bioeng. 2008;100:1–18. doi:10.1002/bit.21838.
Article
CAS
Google Scholar
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013. doi:10.3390/pathogens2020288.
Google Scholar
Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015. doi:10.1007/s10096-015-2323.
Google Scholar
McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 2012;10:39–50.
CAS
Google Scholar
Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A, Forestier C, Balestrino D. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genom. 2016. doi:10.1186/s12864-016-2557-x.
Google Scholar
Rumbo-Feal S, Gómez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM, Rodríguez-Ezpeleta N, Fullaondo A, et al. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in Biofilm compared to planktonic cells. PLoS ONE. 2013. doi:10.1371/journal.pone.0072968.
Google Scholar
Post DMB, Held JM, Ketterer MR, Philips NJ, Sahu A, Apicella MA, Gibson BW. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabòlic labeling and mass spectrometry. BMC Microbiol. 2014. doi:10.1186/s12866-014-0329-9.
Google Scholar
European Listeria Genome Consortium, Trémoulet F, Duché O, Namane A, Martinie B, Labadie JC. Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett. 2002;210:25–31.
Article
Google Scholar
Liu J, Ling J-Q, Wu CD. Physiological properties of Streptococcus mutants UA159 biofilm-detached cells. FEMS Microbiol Lett. 2013. doi:10.1111/1574-6968.12066.
Google Scholar
Nakamura Y, Yamamoto N, Kino Y, Yamamoto N, Kamai S, Mori H, Kurokawa K, Nakashima N. Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities. Appl Microbiol Biotechnol. 2016. doi:10.1007/s00253-016-7532-6.
Google Scholar
Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends Biotechnol. 2006. doi:10.1016/j.tibtech.2006.09.005.
Google Scholar
Nickzad A, Déziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development—an approach for control? Lett Appl Microbiol. 2014. doi:10.1111/lam.12211.
Google Scholar
Chrzanowski Ł, Ławniczak Ł, Czaczyk K. Why do microorganisms produce rhamnolipids? World J Microbiol Biotechnol. 2012;28:401–19.
Article
CAS
Google Scholar
Mireles JR, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183:5848–54.
Article
CAS
Google Scholar
Davey ME, Caiazza NC, O’Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003;185:1027–36.
Article
CAS
Google Scholar
Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.
Article
CAS
Google Scholar
Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E, Greenberg EP, Poole K, et al. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2010. doi:10.1128/JB.01601-09.
Google Scholar
Lequette Y, Greenberg EP. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol. 2005;187:37–44.
Article
CAS
Google Scholar
Dusane DH, Zinjarde SS, Venugopalan VP, Mclean RJ, Weber MM, Rahman PKSM. Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Gen Eng Rev. 2010;27:159–84.
Article
CAS
Google Scholar
Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Microbiol Biotechnol. 2000;66:3262–8.
CAS
Google Scholar
Raya A, Sodagari M, Pinzon NM, He X, Zhang Newby BM, Ju LK. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Environ Sci Pollut Res Int. 2010;17:1529–38.
Article
CAS
Google Scholar
Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol. 2007;189:2531–9.
Article
CAS
Google Scholar
Wang J, Yu B, Tian D, Ni M. Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17. J Biosci. 2013;38:149–56.
Article
CAS
Google Scholar
Fariq A, Saeed A. Production and biomedical applications of probiotic biosurfactants. Curr Microbiol. 2016. doi:10.1007/s00284-015-0978.
Google Scholar
Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DMF, Stanley-Wall NR. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proct Nat Acad Sci USA. 2013. doi:10.1073/pnas.1306390110.
Google Scholar
Romero D, Kolter R. Functional amyloids in bacteria. Int Microbiol. 2014;17:65–73.
CAS
Google Scholar
Kovács AT, van Gestel J, Kuipers OP. The protective layer of biofilm: a repellent function for new class of amphiphilic proteins. Mol Microbiol. 2012. doi:10.1111/j.1365-2958.2012.08101.
Google Scholar
Kobayashi K, Iwano M. BsIA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012. doi:10.1111/j.1365-2958.2012.08094.
Google Scholar
Bromley KM, Morris RJ, Hobley L, Brandani G, Gillespie RM, Mccluskey M, Zachariae U, Marenduzzo D, Stanley-Wall NR, Macphee CE. Interfacial selfassembly of a bacterial hydrophobin. Proc Natl Acad Sci USA. 2015;112:5419–24.
Article
CAS
Google Scholar
Stanley-Wall N, MacPhee CE. Connecting the dots between bacterial biofilms and ice cream. Phys Biol. 2015. doi:10.1088/1478-3975/12/6/063001.
Google Scholar
Queshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS. Biofilms reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact. 2005. doi:10.1186/1475-2859-4-24.
Google Scholar
Maksimova YG. Microbial biofilms in biotechnological processes. Appl Biochem Microbiol. 2014;50:750–60.
Article
CAS
Google Scholar
Ercan D, Demirci A. Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol. 2015. doi:10.3109/07388551.2013.793170.
Google Scholar
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol. 2009. doi:10.1016/j.tibtech.2009.08.001.
Google Scholar
Cheng K-C, Demirci A, Cathmark JM. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol. 2010. doi:10.1007/s00253-010-2622-3.
Google Scholar
Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical synthesis. Trends Biotechnol. 2012. doi:10.1016/j.tibtech.2012.05.003.
Google Scholar
Monds RD, O’Toole GA. The development model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009;17:73–87.
Article
CAS
Google Scholar
Junter G-A, Coquet L, Vilain S, Jouenne T. Immobilized-cell physiology: current data and potentialities of proteomics. Enzyme Microb Technol. 2002;31:201–12.
Article
CAS
Google Scholar
Knudsen GM, Nielsen M-B, Grassby T, Danino-Appleton V, Thomsen LE, Colquhoun IJ, Brocklehurst TF, Olsen JE, Hinton JCD. A third mode of surface-associates growth: immobilization of Salmonella enterica serovar Thyphimurium modulates the RpoS-directed transcriptional programme. Environ Microbiol. 2012;14:1855–75.
Article
CAS
Google Scholar
Selimoglu SM, Elibol M. Alginate as an immobilization material for Mab production via encapsulated hybridoma cells. Crit Rev Biotechnol. 2010;30:145–59.
Article
CAS
Google Scholar
Berlanga M, Miñana-Galbis D, Domènch Ò, Guerrero R. Enhanced polyhydroxyalkanoates accumulation by Halomonas spp. in artificial biofilms of alginate beads. Int Microbiol. 2012. doi:10.2436/20.1501.01.172.
Google Scholar
Lefebvre J, Vincent J-C. Control of the biomass heterogeneity in immobilized cell systems. Influence of initial cell and substrate concentrations, structure thickness, and type of bioreactors. Enzyme Microb Technol. 1997;20:536–43.
Article
CAS
Google Scholar
Hüsken LE, Tramper J, Wijffels RN. Growth and eruption of gel-entraped microcolonies. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J, editors. Immobilized cells: basics and applications. Netherlands: Elsevier; 1996. p. 336–40.
Google Scholar
Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010;6:e1000828.
Article
CAS
Google Scholar
Rollet C, Gal L, Guzzo J. Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2009;290:135–42.
Article
CAS
Google Scholar
Berlanga M, Domènech Ò, Guerrero R. Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating Halomonas venusta. Int Microbiol. 2014. doi:10.2436/20.1501.01.223.
Google Scholar
Ahamad PYA, Kunhi AAM. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation. 2011;22:253–65.
Article
CAS
Google Scholar
Huang H-Y, Tang Y-J, King VA-E, Chou J-W, Tsen J-H. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions. Int Microbiol. 2015. doi:10.2436/20.1501.01.235.
Google Scholar
Zhang Y-W, Prabhu P. Alginate immobilization of recombinant Escherichia coli whole cells harboring l-arabinose isomerase for l-ribulose production. Bioprocess Biosyst Eng. 2010;33:741–8.
Article
CAS
Google Scholar
Darah I, Nisha M, Lim S-H. Polygalacturonase production by calcium alginate immobilized Enterobacter aerogenes NBO2 cells. Appl Biochem Biotechnol. 2015. doi:10.1007/s12010-014-1447-4.
Google Scholar
Atia A, Gomaa A, Fliss I, Beyssac E, Garrait G, Subirade M. A prebiotic matrix for encapsulation of probiotics: physicochemical and microbiological study. J Microencapsulation. 2016. doi:10.3109/02652048.2015.1134688.
Google Scholar
Benítez-Cabello A, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN. Evaluation and identification of poly-microbial biofilms on natural Green Gordal table olives. Anton van Leeuwen. 2015. doi:10.1007/s10482-015-0515-2.
Google Scholar
Hurtado A, Reguant C, Bordons A, Rozès N. Lactic acid bacteria from fermented table olives. Food Microbiol. 2012. doi:10.1016/j.fm.2012.01.006.
Google Scholar
Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A. Yeasts in table olive processing: desirable or spoilage microorganisms? Int J Food Microbiol. 2012;160:42–9.
Article
CAS
Google Scholar
Chapot-Chartier M-P, Kulakauskas S. Cell wall structure and function in lactic acid bacteria. Microb Cell Fact. 2014;13(Suppl 1):S9. doi:10.1186/1475-2859-13-S1-S9.
Article
Google Scholar
Arroyo-López FN, Bautista-Gallego J, Domínguez-Manzano J, Romero-Gil V, Rodriguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol. 2012;32:295–301.
Article
CAS
Google Scholar
Domínguez-Manzano J, Olmo-Ruiz C, Bautista-Gallego J, Arroyo-López FN, Garrido-Fernández A, Jiménez-Díaz R. Biofilm formation on abiotic and biotic surfaces during Spanish style green table olive fermentation. Int J Food Microbiol. 2012;157:230–8.
Article
CAS
Google Scholar
Grounta A, Panagou EZ. Mono and dual species biofilm formation between Lactobacillus pentosus and Pichia membranifaciens on the surface of black olives under different sterile brine conditions. Ann Microbiol. 2014;64:1757–67.
Article
CAS
Google Scholar
Botta C, Cocolin L. Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches. Front Microbiol. 2012. doi:10.3389/fmicb.2012.00245.
Google Scholar
Grounta A, Doulgeraki AI, Nychas G-JE, Panagou EZ. Biofilm formation on Conservolea natural Black olives during single and combined inoculation with a functional Lactobacillus pentosus starter culture. Food Microbiol. 2016. doi:10.1016/j.fm.2015.12.002.
Google Scholar
Osborne JP, Mira de Orduña R, Pilone GJ, Liu SQ. Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol Lett. 2000;191:51–5.
Article
CAS
Google Scholar
Lima LJR, Almeida MH, Nout MJN, Zwietering MH. Theobroma cacao L., “The food of the Gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr. 2011. doi:10.1080/10408391003799913.
Google Scholar
Lee LW, Cheong MW, Curran P, Yu B, Liu SQ. Coffee fermentation and flavor—an intricate and delicate relationship. Food Chem. 2015. doi:10.1016/j.foodchem.2015.03.124.
Google Scholar
Escalante AE, Rebolleda-Gómez M, Benítez M, Travisano M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front Microbiol. 2015. doi:10.3389/fmicb.2015.00143.
Google Scholar
Jagmann N, Philipp B. Design of synthetic microbial communities for biotechnological production processes. J Biotechnol. 2014;184:209–18.
Article
CAS
Google Scholar
Shong J, Jimenez Diaz MR, Collins CH. Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol. 2012;23:798–802.
Article
CAS
Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Article
CAS
Google Scholar
Großkopf T, Soyer OS. Synthetic microbial communities. Curr Opin Microbiol. 2014;18:72–7.
Article
CAS
Google Scholar
Haruta S, Kato S, Yamamoto K, Igarashi Y. Intertwined interspecies relationships: approaches to untangle the microbial network. Environ Microbiol. 2009;11:2963–9.
Article
Google Scholar
Pandhal J, Noirel J. Synthetic microbial ecosystems for biotechnology. Biotechnol Lett. 2014. doi:10.1007/s10529-014-1480-y.
Google Scholar
Song H, Ding M-Z, Jia X-Q, Ma Q, Yuan Y-J. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev. 2014. doi:10.1039/c4cs00114a.
Google Scholar
Kaeberlein T, Lewis K, Epstein SS. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science. 2002;296:1127–9.
Article
CAS
Google Scholar
Gich F, Janys MA, König M, Overmann J. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ Microbiol. 2012;14:2984–97.
Article
Google Scholar
Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol. 2008. doi:10.1128/AEM.00113-08.
Google Scholar
Christian N, Handorf T, Ebenhoh O. Metabolic synergy: increasing biosynthetic capabilities by network cooperation. Genome Inform Ser. 2007;18:320–9.
CAS
Google Scholar
Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Network relationships of bacteria in a stable mixed culture. Microb Ecol. 2008;56:403–11.
Article
CAS
Google Scholar
Klitgord N, Segre D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol. 2010;6:e1001002.
Article
CAS
Google Scholar
Mitri S, Foster KR. A genotypic view of social interactions in microbial communities. Annu Rev Genet. 2013. doi:10.1146/annurev-genet-111212-133307.
Google Scholar
Kerner A, Park J, Williams A, Lin XN. A programmable Escherichia coli consortium via tunable symbiosis. PLoS ONE. 2012;7:e34032.
Article
CAS
Google Scholar
Patle S, Lal B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol Lett. 2007;29:1839–43.
Article
CAS
Google Scholar
Ma Q, Zhou J, Zhang WW, Meng XX, Sun JW, Yuan YJ. Integrated proteomic and metabolomics analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE. 2011;6:e26108.
Article
CAS
Google Scholar
Liu L, Chen K, Zhang J, Liu L, Chen J. Gelatin enhances 2-keto-l-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol. 2011. doi:10.1016/j.jbiotec.2011.08.007.
Google Scholar
Xia T, Eiteman MA, Altman E. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact. 2012;11:77.
Article
CAS
Google Scholar
Goyal G, Tsai S-L, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact. 2011;10:89.
Article
CAS
Google Scholar
Bland RR, Chen HC, Jewell WJ, Bellamy WD, Zall RR. Continuous high rate production of ethanol by Zymomonas mobilis in an attached film expanded bed fermentor. Biotechnol Lett. 1982;4:323–8.
Kunduru MR, Pometto AL. Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol. 1996;16:249–56.
Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol. 2014;31:451–9.
Forberg C, Haggstrom L. Control of cell adhesion and activity during continuous production of acetone and butanol with adsorbed cells. Enz Microbial Technol. 1985;7:230–4.
Urbance SE, Pometto AL, DiSpirito AA, Denli Y. Evaluation of succínic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plàstic composite support bioreactors. Appl Microbiol Biotechnol. 2004;65:664–70.