Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 2004;64(5):625–35.
Article
CAS
Google Scholar
Low KO, Mahadi NM, Illias RM. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol. 2013;97(9):3811–26.
Article
CAS
Google Scholar
van Dijl JM, Hecker M. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact. 2013;12:3.
Article
Google Scholar
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297–306.
Article
CAS
Google Scholar
Guan C, Cui W, Cheng J, Zhou L, Guo J, Hu X, Xiao G, Zhou Z. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb Cell Fact. 2015;14:150.
Article
Google Scholar
Wong SL. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins. Curr Opin Biotechnol. 1995;6(5):517–22.
Article
CAS
Google Scholar
Antelmann H, van Dijl JM, Bron S, Hecker M. Microbial proteomics: functional biology of whole organisms. In: Humphery-Smith I, Hecker M, editors. Proteomic survey through secretome of Bacillus subtilis. New Jersey: Wiley; 2006. p. 179–208.
Google Scholar
Monteferrante CG, MacKichan C, Marchadier E, Prejean MV, Carballido-López R, van Dijl JM. Mapping the twin-arginine protein translocation network of Bacillus subtilis. Proteomics. 2013;13:800–11.
Article
CAS
Google Scholar
Simonen M, Palva I. Protein secretion in Bacillus species. Microbiol Rev. 1993;57(1):109–37.
CAS
Google Scholar
Li W, Zhou X, Lu P. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol. 2004;155:605–10.
Article
CAS
Google Scholar
Harth G, Horwitz MA. Expression and efficient export of enzymatically active Mycobacterium tuberculosis glutamine synthetase in Mycobacterium smegmatis and evidence that the information for export is contained within the protein. J Biol Chem. 1997;272:22728–35.
Article
CAS
Google Scholar
Boël G, Pichereau V, Mijakovic I, Mazé A, Poncet S, Gillet S, Giard JC, Hartke A, Auffray Y, Deutscher J. Is 2-Phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J Mol Biol. 2004;337:485–96.
Article
Google Scholar
Yang CK, Ewis HE, Zhang X, Lu CD, Hu HJ, Pan Y, Abdelal AT, Tai PC. Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J Bacteriol. 2011;193:5607–15.
Article
CAS
Google Scholar
Bendtsen ID, Wooldridge KG. Non-classical secretion. In: Wooldridge K, editor. Bacterial secreted proteins: secretion mechanisms and role in pathogenesis. Caister: Academic press; 2009. p. 224–35.
Google Scholar
Wang G, Chen H, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Zhang H, Chen W. How are the non-classically secreted bacterial proteins released into the extracellular milieu? Curr Microbiol. 2013;67(6):688–95.
Article
CAS
Google Scholar
Kouwen TR, Antelmann H, van der Ploeg R, Denham EL, Hecker M, van Dijl JM. MscL of Bacillus subtilis prevents selective release of cytoplasmic proteins in a hypotonic environment. Proteomics. 2009;9(4):1033–43.
Article
CAS
Google Scholar
Wang G, Chen H, Zhang H, Song Y, Chen W. The Secretion of an intrinsically disordered protein with different secretion signals in Bacillus subtilis. Curr Microbiol. 2013;66(6):566–72.
Article
CAS
Google Scholar
Payne MS, Jackson EN. Use of alkaline phospatase fusions to study protein secretion in Bacillus subtilis. J Bacteriol. 1991;173:2278–82.
CAS
Google Scholar
Voigt B, Schweder T, Sibbald MJ, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics. 2006;6:268–81.
Article
CAS
Google Scholar
Trost M, Wehmhöner D, Kärst U, Dieterich G, Wehland J, Jänsch L. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics. 2005;5:1544–57.
Article
CAS
Google Scholar
Pasztor L, Ziebandt AK, Nega M, Schlag M, Haase S, Franz-Wachtel M, et al. Staphylococcal major autolysin (Atl) is involved in excretion of cytoplasmic proteins. J Biol Chem. 2010;285:36794–803.
Article
CAS
Google Scholar
Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S. The influence of agr and sigma B in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics. 2004;4:3034–47.
Article
CAS
Google Scholar
Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S. Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol. 2010;86:319–26.
Article
CAS
Google Scholar
Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics. 2010;9(10):2205–24.
Article
CAS
Google Scholar
Dong YN, Liu XM, Chen HQ, Xia Y, Zhang HP, Zhang H, Chen W. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. J Dairy Sci. 2011;94:1176–84.
Article
CAS
Google Scholar
Xia Y, Zhao J, Chen H, Liu X, Wang Y, Tian F, Zhang HP, Zhang H, Chen W. Extracellular secretion in Bacillus subtilis of a cytoplasmic thermostable β-galactosidase from Geobacillus stearothermophilus. J Dairy Sci. 2010;93:2838–45.
Article
CAS
Google Scholar
Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev. 2004;68:207–33.
Article
CAS
Google Scholar
Wu SC, Yeung JC, Duan Y, Ye R, Sazrka SJ, Habibi HR, Wong SL. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl Environ Microbiol. 2002;68:3261–9.
Article
CAS
Google Scholar
Cohen SN, Chang AC, Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA. 1972;69:2110–4.
Article
CAS
Google Scholar
Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol. 1961;81:741–6.
CAS
Google Scholar