Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW: Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma. 2012, 170: 227-231.
Article
CAS
Google Scholar
Youssef MMA, Eissa MFM: Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 J Biotechnol. Pharm Res. 2014, 5: 1-6.
Google Scholar
Raja N: Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici. 2013, 1000e112: 1000e112-
Google Scholar
Araujo ASF, Santos VB, Monteiro RTR: Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauistate, Brazil. Eur J Soil Biol. 2008, 44: 225-230. 10.1016/j.ejsobi.2007.06.001.
Article
Google Scholar
Megali L, Glauser G, Rasmann S: Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron Sustain Dev. 2013, doi:10.1007/s13593-013-0187-0
Google Scholar
Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N: Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma. 2014, doi:10.1007/s00709-013-0607-7
Google Scholar
Sinha RK, Valani D, Chauhan K, Agarwal S: Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int J Agric Health Saf. 2014, 1: 50-64.
Google Scholar
Singh JS, Pandey VC, Singh DP: Efficient soil microorganisms: a new dimension for sustainable agriculture andenvironmental development. Agric Ecosyst Environ. 2011, 140: 339-353. 10.1016/j.agee.2011.01.017.
Article
Google Scholar
Adesemoye AO, Kloepper JW: Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol. 2009, 85: 1-12.
Article
CAS
Google Scholar
Adesemoye AO, Torbert HA, Kloepper JW: Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Micro Ecol. 2009, 58: 921-929. 10.1007/s00248-009-9531-y.
Article
CAS
Google Scholar
Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B: High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol. 2008, 10: 1-9.
CAS
Google Scholar
Mendes R, Garbeva P, Raaijmakers JM: The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev. 2013, 37: 634-663.
Article
CAS
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P: Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013, 64: 807-838.
Article
CAS
Google Scholar
Berg G, Zachow C, Müller H, Phillips J, Tilcher R: Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy. 2013, 3: 648-656. 10.3390/agronomy3040648.
Article
Google Scholar
Hirsch PR, Mauchline TH: Who’s who in the plant root microbiome?. Nat Biotechnol. 2012, 30: 961-962.
Article
CAS
Google Scholar
Gopal M, Gupta A, Thomas GV: Bespoke microbiome therapy to manage plant diseases. Front Microbiol. 2013, 5: 15-
Google Scholar
Nina K, Thomas WK, Prem SB: Beneficial organisms for nutrient uptake. VFRC report 2014/1, virtual fertilizer research center. 2014, 63-Washington, DC: Wageningen Academic Publishers
Google Scholar
Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N: Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma. 2013, doi:10.1007/s00709-013-0547-2
Google Scholar
Sahoo RK, Bhardwaj D, Tuteja N: Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. Plant Acclimation to Environmental Stress. Edited by: Tuteja N, Gill SS. 2013b, 403-432. LLC 233 Spring Street, New York, 10013, USA: Springer Science plus Business Media
Chapter
Google Scholar
Dogan K, Kamail Celik I, Mustafa Gok M, Ali C: Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. Afr J Microbiol Res. 2011, 5: 3186-3194.
CAS
Google Scholar
Aziz G, Bajsa N, Haghjou T, Taule C, Valverde A, Mariano J, Arias A: Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol. 2012, 61: 320-326.
Article
Google Scholar
Dhanasekar R, Dhandapani R: Effect of biofertilizers on the growth of Helianthus annuus. Int J plant, Ani Environ Sci. 2012, 2: 143-147.
Google Scholar
Choudhury MA, Kennedy IR: Prospects and potentials for system of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils. 2004, 39: 219-227. 10.1007/s00374-003-0706-2.
Article
Google Scholar
Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ: Production of B-Group vitamins by two Azotobacter strainswith phenolic compounds as sole carbon source under diazotrophicand adiazotrophic conditions. J Appl Microbiol. 2000, 89: 486-493.
Article
CAS
Google Scholar
Abd El-Fattah DA, Ewedab WE, Zayed MS, Hassaneina MK: Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Ann Agric Sci. 2013, 58: 111-118.
Google Scholar
Gholami A, Shahsavani S, Nezarat S: The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination seedling Growth and Yield of Maize. Int J Biol Life Sci. 2009, 5: 1-
Google Scholar
Mali GV, Bodhankar MG: Antifungal and phytohormone production potential of Azotobacter chroococcum isolates from Groundnut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci. 2009, 23: 293-297.
CAS
Google Scholar
Wani SA, Chand S, Ali T: Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J. 2013, 1: 35-38. 10.12944/CARJ.1.1.04.
Article
Google Scholar
Bhattacharyya PN, Jha DK: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012, 28: 1327-1350.
Article
CAS
Google Scholar
Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A: A review on the role of Azospirillum in the yield improvement of non leguminous crops. Afr J Microbiol Res. 2013, 6: 1085-1102.
Google Scholar
Bashan Y, Holguin G, Bashan LE: Azospirillum-plant relationships: agricultural, physiological, molecular and environmental advances (1997–2003). Can J Microbiol. 2004, 50: 521-577.
Article
CAS
Google Scholar
Mehdipour-Moghaddam MJ, Emtiazi G, Salehi Z: Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agr Sci Tech. 2012, 14: 985-994.
Google Scholar
Sarig S, Blum A, Okon Y: Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci. 1992, 110: 271-277.
Article
Google Scholar
Ilyas N, Bano A, Iqbal S, Raja NI: Physiological, biochemical and molecular characterization of Azospirillum spp. isolated from maize under water stress. Pak J Bot. 2012, 44: 71-80.
CAS
Google Scholar
Askary M, Mostajeran A, Amooaghaei R, Mostajeran M: Influence of the co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2, 4-D on grain yield and N, P, K content of Triticum aestivum (cv. Baccros and Mahdavi). Am Eurasian J Agric Environ Sci. 2009, 5: 296-307.
CAS
Google Scholar
Sharma P, Sardana V, Kandola SS: Response of groundnut (Arachishypogaea L.) to Rhizobium Inoculation. Libyan Agric Res Centre J Int. 2011, 2: 101-104.
Google Scholar
Nehra K, Yadav SA, Sehrawat AR, Vashishat RK: Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian J Microbiol. 2007, 47: 329-335.
Article
CAS
Google Scholar
Patil PL, Medhane NS: Seed inoculation studies in gram (Cicer arietinum) with different strains of Rhizobium sp. Plant Soil. 1974, 40: 221-223. 10.1007/BF00011425.
Article
Google Scholar
Rashid MH, Schafer H, Gonzalez J, Wink M: Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol. 2012, 35: 98-109.
Article
Google Scholar
Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole SP: Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizosphere investigated by comparative transcriptomics. Genome Biol. 2011, 12: 106-109.
Article
CAS
Google Scholar
Hussain N, Mujeeb F, Tahir M, Khan GD, Hassan NM, Bari A: Effectiveness of Rhizobium under salinity stress. Asian J Plant Sci. 2002, 1: 12-14.
Article
Google Scholar
Grossman JM, Schipanski ME, Sooksanguan T, Drinkwater LE: Diversity of rhizobia nodulating soybean Glycine max (Vinton)] varies under organic and conventional management. Appl Soil Ecol. 2011, 50: 14-20.
Article
Google Scholar
Peng G, Yuan Q, Li H, Zhang W, Tan Z: Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol. 2008, 58: 2158-2163.
Article
CAS
Google Scholar
Chi F, Yang P, Han F, Jing Y, Shen S: Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics. 2010, 10: 1861-1874.
Article
CAS
Google Scholar
Thamer S, Schädler M, Bonte D, Ballhorn DJ: Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil. 2011, 34: 1209-1219.
Google Scholar
Menjivar RD, Cabrera JA, Kranz J, Sikora RA: Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant Soil. 2012, 352: 233-241. 10.1007/s11104-011-0991-8.
Article
CAS
Google Scholar
Pindi PK, Satyanarayana SDV: Liquid microbial consortium- a potential tool for sustainable soil health. J Biofertil Biopest. 2012, 3: 4-
Google Scholar
Dastager SG, Deepa CK, Pandey A: Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem. 2010, 48: 987-992.
Article
CAS
Google Scholar
Ogbo FC: Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol. 2010, 101: 4120-4124.
Article
CAS
Google Scholar
Park J, Bolan N, Megharaj M, Naidu R: Isolation of Phosphate-Solubilizing Bacteria and characterization of their Effects on Lead Immobilization. Pedologist. 2010, 53: 67-75.
CAS
Google Scholar
Ambrosini A, Beneduzi A, Stefanski T, Pinheiro F, Vargas L, Passaglia L: Screening of plant growth promoting Rhizobacteria isolated from sunflower Helianthus annuus L. Plant & Soil. 2012, 356: 245-264. 10.1007/s11104-011-1079-1.
Article
CAS
Google Scholar
Mohammadi K, Yousef Sohrabi Y: Bacterial Biofertilizers for sustainable crop production: A review. J Agric Biol Sci. 2012, 7: 307-316.
Google Scholar
Kogel KH, Franken P, Huckelhovenl R: Endophyte or parasite – what decides?. Curr Opin Plant Biol. 2006, 9: 358-363.
Article
Google Scholar
Lamabam PS, Gill SS, Tuteja N: Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav. 2011, 6: 175-191.
Article
CAS
Google Scholar
Smith S, Lakobsen I, Gronlund M, Smith FA: Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011, 156: 1050-1057.
Article
CAS
Google Scholar
Abdel-Lateif K, Bogusz D, Hocher V: The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav. 2012, 7: 636-641.
Article
CAS
Google Scholar
Roy M, Srivastava RC: Assembling BNF system in rice plant: frontier areas of research. Curr Sci. 2013, 104: 3-10.
Google Scholar
Venkataraman GS, Neelakantan S: Effect of cellular constituents of the nitrogen fixing blue-green algae. Cylindrospermum nusciola on the root growth of rice seedlings. J General Appl Microbiol. 1967, 13: 53-61. 10.2323/jgam.13.53.
Article
CAS
Google Scholar
Pandey S, Shrivastava AK, Rai R, Rai LC: Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli. Plant Mol Biol. 2013, 83: 417-432.
Article
CAS
Google Scholar
Chaurasia AK, Apte SK: Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol. 2011, 77: 395-399.
Article
CAS
Google Scholar
Yang JW, Kloepper JW, Ryu CM: Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009, 14: 1-4.
Article
CAS
Google Scholar
Antoun H, Prevost D: Ecology of plant growth promoting rhizobacteria. PGPR: Biocontrol and Biofertilization. Edited by: Siddiqui ZA. 2005, 1-38. Dordrecht: Springer
Google Scholar
Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB: Cross-Species Alleviation of Biotic and Abiotic Stresses by the Endophyte Pseudomonas aeruginosa PW09. J Phytopathol. 2012, 160: 532-539. 10.1111/j.1439-0434.2012.01941.x.
Article
Google Scholar
Paul D, Nair S: Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol. 2008, 48: 1-7.
Article
CAS
Google Scholar
Yao L, Wu Z, Zheng Y, Kaleem I, Li C: Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European J Soil Biol. 2010, 46: 49-54. 10.1016/j.ejsobi.2009.11.002.
Article
CAS
Google Scholar
Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Defago G, Haas D, Keel C: Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol. 2000, 182: 1215-1225.
Article
CAS
Google Scholar
Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA: Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology. 2012, 102: 403-412.
Article
CAS
Google Scholar
Egamberdiyeva D: The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 2007, 36: 184-189. 10.1016/j.apsoil.2007.02.005.
Article
Google Scholar
Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N: A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem. 2013, 70: 403-410.
Article
CAS
Google Scholar
Alavi P, Starcher MR, Zachow C, Müller H, Berg G: Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci. 2013, 4: 141-
Article
Google Scholar
Kohler J, Caravaca F: An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa Roldan. Soil Biol Biochem. 2010, 42: 429-434. 10.1016/j.soilbio.2009.11.021.
Article
CAS
Google Scholar
Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H: Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis. PLoS ONE. 2012, 7: e33977-doi:10.1371/journal.pone.0033977
Article
CAS
Google Scholar
Aliasgharzad N, Reza M, Neyshabouri Salimi G: Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia. 2006, 19: 324-328.
Google Scholar
German MA, Burdman S, Okon Y, Kigel J: Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils. 2000, 32: 259-264. 10.1007/s003740000245.
Article
Google Scholar
Casanovas EM, Barassi CA, Sueldo RJ: Azospirillum inoculation mitigates water stress effects in maize seedlings. Cer Res Commun. 2002, 30: 343-350.
Google Scholar
Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S: Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta. 2005, 221: 297-303.
Article
CAS
Google Scholar
Joe MM, Jaleel CA, Sivakumar PK, Zhao CX, Karthikeyan B: Co-aggregation in Azospirillum brasilensense MTCC-125 with other PGPR strains: Effect of physical and chemical factors and stress endurance ability. J Taiwan Inst Chem Engg. 2009, 40: 491-499. 10.1016/j.jtice.2009.02.006.
Article
CAS
Google Scholar
Marulanda A, Barea JM, Azcon R: Stimulation of Plant Growth and Drought Tolerance by Native Microorganisms (AM Fungi and Bacteria) from Dry Environments: Mechanisms Related to Bacterial Effectiveness. J Plant Growth Regul. 2009, 28: 115-124. 10.1007/s00344-009-9079-6.
Article
CAS
Google Scholar
Heidari M, Golpayegani A: Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci. 2012, 11: 57-61.
Google Scholar
Liddycoat SM, Greenberg BM, Wolyn DJ: The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol. 2009, 55: 388-394.
Article
CAS
Google Scholar
Ruiz-Sanchez M, Aroca R, Munoz Y, Polon R, Ruiz-Lozano JM: The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol. 2010, 167: 862-869.
Article
CAS
Google Scholar
Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, García-Mina JM, Pozo MJ, Lopez-Raez JA: Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol. 2013, 170: 47-55.
Article
CAS
Google Scholar
Gill SS, Khan NA, Tuteja N: Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress ( Lepidium sativum L.). Plant Sci. 2012, 182: 112-120.
Article
CAS
Google Scholar
Samuel S, Muthukkaruppan SM: Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil. Curr Bot. 2011, 2: 22-25.
CAS
Google Scholar
Baharlouei K, Pazira E, Solhi M: Evaluation of Inoculation of plant Growth-Promoting Rhizobacteria on Cadmium. 2011, Singapore: International Conference on Environmental Science and Technology IPCBEE vol.6 IACSIT Press
Google Scholar
Tang J, Wang R, Niu X, Wang M, Zhou Q: Characterization on the rhizoremediation of petroleum contaminated soil as affected by different influencing factors. Biogeosciences Discuss. 2010, 7: 4665-4688. 10.5194/bgd-7-4665-2010.
Article
Google Scholar
Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polstan JE, Kloepper JW: Plant growth promoting rhizobacteria mediated protection in tomato against tomato mottle virus. Plant Dis. 2000, 84: 79-84.
Article
Google Scholar
Backman PA, Sikora RA: Endophytes: an emerging tool for biological control. Biol Control. 2008, 46: 1-3.
Article
Google Scholar
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW: Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004, 134: 1017-1026.
Article
CAS
Google Scholar
Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R: Rhizobacteria mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology. 2003, 93: 1301-1307.
Article
Google Scholar
Aravind R, Kumar A, Eapen SJ, Ramana KV: Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol. 2009, 48: 58-64.
Article
CAS
Google Scholar
Zhang N, Kai W, He X, Li S, Zhang Z, Shen B, Yang X, Zhang R, Huang Q, Shen Q: A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil. 2011, 344: 87-97. 10.1007/s11104-011-0729-7.
Article
CAS
Google Scholar
Medeiros FHV, Souza RM, Medeiros FCL, Zhang H, Wheeler T, Payton P, Ferro HM, Paré PW: Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant Soil. 2011, 347: 327-337. 10.1007/s11104-011-0852-5.
Article
CAS
Google Scholar
Ling N, Huang Q, Guo S, Shen Q: Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum. Plant Soil. 2011, 341: 485-493. 10.1007/s11104-010-0660-3.
Article
CAS
Google Scholar
Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R: Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control. 2009, 51: 16-25. 10.1016/j.biocontrol.2009.06.002.
Article
CAS
Google Scholar
Khalil S, Labuschagne I: Role of mycorrhizae, pathogens and weeds in sustainable pine Forest management Soil biology and biochemistry section, national agricultural research centre, Islamabad–Pakistan. Int J Agric Biol. 2002, 4: 1-
Google Scholar
Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP: Auxofuran, a novel substance stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol. 2006, 72: 3550-3557.
Article
CAS
Google Scholar
Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer H, Novak V: Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilica. Plant Pathol. 2008, 57: 1109-1116. 10.1111/j.1365-3059.2008.01895.x.
Article
Google Scholar
Liu JY, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ: Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 2007, 50: 529-544.
Article
CAS
Google Scholar
Neeraj KS: Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol. 2011, 47: 288-295. 10.1016/j.ejsobi.2011.07.002.
Article
Google Scholar
Bonfante P, Genre A: Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010, 27: 1-48.
Article
CAS
Google Scholar
Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Tyler BM, Pardo AG, Martin F: A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol. 2011, 21: 1197-1203.
Article
CAS
Google Scholar
Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P: Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol. 2009, 150: 2018-2029.
Article
CAS
Google Scholar
Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM: Agricultural importance of algae. Afr J Biotechnol. 2012, 11: 11648-11658.
Article
Google Scholar
Salvioli A, Zouari I, Chalot M, Bonfante P: The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol. 2012, 12: 44-
Article
CAS
Google Scholar
Kosuta S: Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific expression in roots of Medicago truncatula. Plant Physiol. 2003, 131: 952-962.
Article
CAS
Google Scholar
Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GE, Downie JA, Etzler ME: Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol. 2013, 161: 556-567.
Article
CAS
Google Scholar
Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG: A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol. 2009, 151: 1197-1206.
Article
CAS
Google Scholar
Molina-Favero C, Mónica Creus C, Luciana Lanteri M, Correa-Aragunde N, Lombardo MC, Barassi AC, Lamattina L: Nitric Oxide and Plant Growth Promoting Rhizobacteria: Common Features Influencing Root Growth and Development. Adv Bot Res. 2007, 46: 1-33.
Article
CAS
Google Scholar
Bucher M, Wegmüller S, Drissner D: Chasing the structures of small molecules in arbuscular mycorrhizal signalling. Curr Opin Plant Biol. 2009, 12: 500-507.
Article
CAS
Google Scholar
Bapaume L, Reinhardt D: How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Front Plant Sci. 2012, 3: 223-
Article
Google Scholar
Zhang Q, Blaylock LA, Harrison MJ: Two Medicago truncatula Half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell. 2010, 22: 1483-1497.
Article
CAS
Google Scholar
Tromas A, Parizot B, Diagne N, Champion A, Hocher V: Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS ONE. 2012, 7: e44742-
Article
CAS
Google Scholar
Sevilla M, Burris RH, Gunapala N, Kennedy C: Comparison of benefit to sugarcane plant growth and 15n2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif–mutant strains. Mol Plant-Microbe Interact. 2001, 14: 358-366. 10.1094/MPMI.2001.14.3.358.
Article
CAS
Google Scholar
Bertalan M, Albano R, de-Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschse M, Freitas F, Vida M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L: Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics. 2009, 10: 450-
Article
CAS
Google Scholar
Brusamarello-Santos L, Pacheco F, Aljanabi S, Monteiro R, Cruz L, Baura V, Pedrosa F, Souza E, Wassem R: Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil. 2012, 356: 113-125. 10.1007/s11104-011-1044-z.
Article
CAS
Google Scholar
Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV: Plant-growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol. 2007, 75: 1143-1150.
Article
CAS
Google Scholar
Bent E, Tuzun S, Chanway CP, Enebak S: Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol. 2001, 47: 793-800.
Article
CAS
Google Scholar
Sudha M, Gowri RS, Prabhavati P, Astapriya P, Devi SY, Saranya A: Production and optimization of indole-acetic-acid by indigenous micro flora using agro waste as substrate. Pakistan J Biological Sci. 2012, 15: 39-43. 10.3923/pjbs.2012.39.43.
Article
CAS
Google Scholar
Glick BR, Penrose DM, Li J: A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 1998, 190: 63-68.
Article
CAS
Google Scholar
Tripura CB, Sudhakar Reddy P, Reddy MK, Sashidhar B, Podile AR: Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of enterobacteriaceae. Indian J Microbiol. 2007, 47: 126-131.
Article
CAS
Google Scholar
Sashidhar B, Podile AR: Mineral phosphate solubilisation by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol. 2010, 109: 1-12.
CAS
Google Scholar
Ané JM1, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Lévy J, Debellé F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR: Medicago truncatula DMI1required for bacterial and fungal symbioses in legumes. Sci. 2004, 303: 1364-1367. 10.1126/science.1092986.
Article
CAS
Google Scholar
Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J: Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011, 469: 58-63.
Article
CAS
Google Scholar