Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A: Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact. 2005, 4: 27- 10.1186/1475-2859-4-27.
Article
Google Scholar
Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V: Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog. 2005, 21: 632-639.
Article
CAS
Google Scholar
Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP: High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. 1991, 282: 205-208. 10.1016/0014-5793(91)80478-L.
Article
CAS
Google Scholar
Worrall DM, Goss NH: The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol. 1989, 3: 28-32.
CAS
Google Scholar
Wu W, Xing L, Zhou B, Lin Z: Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact. 2011, 10: 9- 10.1186/1475-2859-10-9.
Article
CAS
Google Scholar
García-Fruitós E, Rodríguez-Carmona E, Díez-Gil C, Ferraz RM, Vázquez E, Corchero JL, Cano-Sarabia M, Ratera I, Ventosa N, Veciana J, Villaverde A: Surface cell growth engineering assisted by a novel bacterial nanomaterial. Adv Mater. 2009, 21: 4249-4253. 10.1002/adma.200900283.
Article
Google Scholar
Nahalka J, Mislovicova D, Kavcova H: Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Mol Biosyst. 2009, 5: 819-821. 10.1039/b900526a.
Article
CAS
Google Scholar
Roessl U, Nahalka J, Nidetzky B: Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett. 2010, 32: 341-350. 10.1007/s10529-009-0173-4.
Article
CAS
Google Scholar
Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R: Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. 2008, 7: 34- 10.1186/1475-2859-7-34.
Article
Google Scholar
Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson CM: Kinetic partitioning of protein folding and aggregation. Nat Struct Biol. 2002, 9: 137-143. 10.1038/nsb752.
Article
CAS
Google Scholar
De Groot NS, Aviles FX, Vendrell J, Ventura S: Mutagenesis of the central hydrophobic cluster in Aβ42 Alzheimer’s peptide. FEBS J. 2006, 273: 658-668. 10.1111/j.1742-4658.2005.05102.x.
Article
Google Scholar
Sim J, Sim TS: Amino acid substitutions affecting protein solubility: high level expression of Streptomyces clavuligerus isopenicillin N synthase in Escherichia coli. J Mol Catal B: Enzym. 1999, 6: 133-143. 10.1016/S1381-1177(98)00072-1.
Article
CAS
Google Scholar
Arie JP, Miot M, Sassoon N, Betton JM: Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol Microbiol. 2006, 62: 427-437. 10.1111/j.1365-2958.2006.05394.x.
Article
CAS
Google Scholar
Seo JH, Li L, Yeo JS, Cha HJ: Baculoviral polyhedrin as a novel fusion partner for formation of inclusion body in Escherichia coli. Biotechnol Bioeng. 2003, 84: 467-473. 10.1002/bit.10798.
Article
CAS
Google Scholar
Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S: Amyloid-like properties of bacterial inclusion bodies. J Mol Biol. 2005, 347: 1025-1037. 10.1016/j.jmb.2005.02.030.
Article
Google Scholar
Nahalka J: Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate. J Ind Microbiol Biotechnol. 2008, 35: 219-223. 10.1007/s10295-007-0287-4.
Article
CAS
Google Scholar
Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T: Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 2001, 14: 529-532. 10.1093/protein/14.8.529.
Article
CAS
Google Scholar
Argos P: An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol. 1990, 211: 943-958. 10.1016/0022-2836(90)90085-Z.
Article
CAS
Google Scholar
George RA, Heringa J: An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng. 2002, 15: 871-879. 10.1093/protein/15.11.871.
Article
CAS
Google Scholar
Gokhale RS, Khosla C: Role of linkers in communication between protein modules. Curr Opin Chem Biol. 2000, 4: 22-27. 10.1016/S1367-5931(99)00046-0.
Article
CAS
Google Scholar
Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T: Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins. 2004, 57: 829-838. 10.1002/prot.20244.
Article
CAS
Google Scholar
Waldo GS: Genetic screens and directed evolution for protein solubility. Curr Opin Chem Biol. 2003, 7: 33-38. 10.1016/S1367-5931(02)00017-0.
Article
CAS
Google Scholar
Mihara Y, Utagawa T, Yamada H, Asano Y: Acid phosphatase/phosphotransferases from enteric bacteria. J Biosci Bioeng. 2001, 92: 50-54.
Article
CAS
Google Scholar
Asano Y, Mihara Y, Yamada H:A novel selective nucleoside phosphorylating enzyme fromMorganella morganii.J Biosci Bioeng. 1999, 87: 732-738.
Article
CAS
Google Scholar
Waldo GS, Standish BM, Berendzen J, Terwilliger TC: Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol. 1999, 17: 691-695. 10.1038/10904.
Article
CAS
Google Scholar
Tsumoto K, Umetsu M, Kumagai I, Ejima D, Arakawa T: Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine. Biochem Biophys Res Commun. 2003, 312: 1383-1386. 10.1016/j.bbrc.2003.11.055.
Article
CAS
Google Scholar
Tsumoto K, Abe R, Ejima D, Arakawa T: Non-denaturing solubilization of inclusion bodies. Curr Pharm Biotechnol. 2010, 11: 309-312. 10.2174/138920110791111924.
Article
CAS
Google Scholar
Peternel S, Gaberc-Porekar V, Komel R: Bacterial growth conditions affect quality of GFP expressed inside inclusion bodies. Acta Chimica Slovenica. 2009, 56: 860-867.
CAS
Google Scholar
Peternel S, Komel R: Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact. 2010, 9: 66- 10.1186/1475-2859-9-66.
Article
Google Scholar
Heim R, Tsien RY: Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996, 6: 178-182. 10.1016/S0960-9822(02)00450-5.
Article
CAS
Google Scholar
Giraldo R: Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proc Natl Acad Sci USA. 2007, 104: 17388-17393. 10.1073/pnas.0702006104.
Article
CAS
Google Scholar
Hengen P: Purification of His-Tag fusion proteins from Escherichia coli. Trends Biochem Sci. 1995, 20: 285-286. 10.1016/S0968-0004(00)89045-3.
Article
CAS
Google Scholar
Jiang C, Wu LL, Zhao GC, Shen PH, Jin K, Hao ZY, Li SX, Ma GF, Luo FF, Hu GQ: Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms. Microb Cell Fact. 2010, 9: 91- 10.1186/1475-2859-9-91.
Article
CAS
Google Scholar
Kyle S, James KA, McPherson MJ: Recombinant production of the therapeutic peptide lunasin. Microb Cell Fact. 2012, 11: 28- 10.1186/1475-2859-11-28.
Article
CAS
Google Scholar
Li Q, Chen AS, Gayen S, Kang C: Expression and purification of the p75 neurotrophin receptor transmembrane domain using a ketosteroid isomerase tag. Microb Cell Fact. 2012, 11: 45- 10.1186/1475-2859-11-45.
Article
CAS
Google Scholar
Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T: Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog. 2004, 20: 1301-1308. 10.1021/bp0498793.
Article
CAS
Google Scholar
Ishibashi M, Tsumoto K, Tokunaga M, Ejima D, Kita Y, Arakawa T: Is arginine a protein-denaturant?. Protein Expr Purif. 2005, 42: 1-6. 10.1016/j.pep.2005.03.028.
Article
CAS
Google Scholar
Bohm G, Muhr R, Jaenicke R: Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992, 5: 191-195. 10.1093/protein/5.3.191.
Article
CAS
Google Scholar
Arakawa T, Tsumoto K: The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun. 2003, 304: 148-152. 10.1016/S0006-291X(03)00578-3.
Article
CAS
Google Scholar
Maeda Y, Ueda H, Kazami J, Kawano G, Suzuki E, Nagamune T: Engineering of functional chimeric protein G-Vargula luciferase. Anal Biochem. 1997, 249: 147-152. 10.1006/abio.1997.2181.
Article
CAS
Google Scholar
Marqusee S, Baldwin RL:Helix stabilization by Glu-…Lys + salt bridges in short peptides ofde novodesign.Proc Natl Acad Sci USA. 1987, 84: 8898-8902.
Article
CAS
Google Scholar
Gerdes HH, Kaether C: Green fluorescent protein: applications in cell biology. FEBS Lett. 1996, 389: 44-47. 10.1016/0014-5793(96)00586-8.
Article
CAS
Google Scholar
Day RN, Periasamy A, Schaufele F: Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001, 25: 4-18. 10.1006/meth.2001.1211.
Article
CAS
Google Scholar
Medina-Kauwe LK, Chen X: Using GFP–ligand fusions to measure receptor-mediated endocytosis in living cells. Vitam Horm. 2002, 65: 81-95.
Article
CAS
Google Scholar
Stretton S, Techkarnjanaruk S, McLennan AM, Goodman AE: Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl Environ Microbiol. 1998, 64: 2554-2559.
CAS
Google Scholar
Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS: Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2005, 24: 79-88.
Article
Google Scholar
Nakayama M, Ohara O: A system using convertible vectors for screening soluble recombinant proteins produced in Escherichia coli from randomly fragmented cDNAs. Biochem Biophys Res Commun. 2003, 312: 825-830. 10.1016/j.bbrc.2003.10.193.
Article
CAS
Google Scholar
Hoffmann F, Rinas U: Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol. 2004, 89: 143-161.
CAS
Google Scholar
Wickner S, Maurizi MR, Gottesman S: Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999, 286: 1888-1893. 10.1126/science.286.5446.1888.
Article
CAS
Google Scholar
Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, Ventura S: Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta. 2008, 1783: 1815-1825. 10.1016/j.bbamcr.2008.06.007.
Article
CAS
Google Scholar
Yanlian Y, Ulung K, Xiumei W, Horii A, Yokoi H, Shuguang Z: Designer self-assembling peptide nanomaterials. Nano Today. 2009, 4: 193-210. 10.1016/j.nantod.2009.02.009.
Article
Google Scholar
Thaller MC, Berlutti F, Schippa S, Lombardi G, Rossolini GM: Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology. 1994, 140: 1341-1350. 10.1099/00221287-140-6-1341.
Article
CAS
Google Scholar
Kopito RR: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10: 524-530. 10.1016/S0962-8924(00)01852-3.
Article
CAS
Google Scholar
Kane JF, Hartley DL: Formation of recombinant protein inclusion bodies in. Trends Biotechnol. 1988, 6: 95-101. 10.1016/0167-7799(88)90065-0.
Article
CAS
Google Scholar
Villaverde A, Garcia-Fruitos E, Rinas U, Seras-Franzoso J, Kosoy A, Corchero JL, Vazquez E: Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact. 2012, 11: 76- 10.1186/1475-2859-11-76.
Article
CAS
Google Scholar
Nahalka J, Nidetzky B: Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng. 2007, 97: 454-461. 10.1002/bit.21244.
Article
CAS
Google Scholar
Garcia-Fruitos E, Aris A, Villaverde A: Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol. 2007, 73: 289-294. 10.1128/AEM.01952-06.
Article
CAS
Google Scholar
Garcia-Fruitos E: Inclusion bodies: a new concept. Microb Cell Fact. 2010, 9: 80- 10.1186/1475-2859-9-80.
Article
Google Scholar
Nahalka J, Vikartovska A, Hrabarova E: A crosslinked inclusion body process for sialic acid synthesis. J Biotechnol. 2008, 134: 146-153. 10.1016/j.jbiotec.2008.01.014.
Article
CAS
Google Scholar
Nahalka J, Gemeiner P, Bucko M, Wang PG: Bioenergy beads: a tool for regeneration of ATP/NTP in biocatalytic synthesis. Artif Cells Blood Substit Immobil Biotechnol. 2006, 34: 515-521. 10.1080/10731190600862886.
Article
CAS
Google Scholar