Chiti F, Dobson CM: Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006, 75: 333-366. 10.1146/annurev.biochem.75.101304.123901.
Article
CAS
Google Scholar
Marston FAO: The purification of eukaryotic polypeptides synthesized in escherichia-coli. Biochem J. 1986, 240: 1-12.
Article
CAS
Google Scholar
Villaverde A, Carrio MM: Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett. 2003, 25: 1385-1395. 10.1023/A:1025024104862.
Article
CAS
Google Scholar
Garcia-Fruitos E: Inclusion bodies: a new concept. Microb Cell Fact. 2010, 9: 80- 10.1186/1475-2859-9-80.
Article
Google Scholar
Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M: Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J. 2011, 278: 2408-2418. 10.1111/j.1742-4658.2011.08163.x.
Article
CAS
Google Scholar
Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK: Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr Purif. 2000, 18: 182-192. 10.1006/prep.1999.1179.
Article
CAS
Google Scholar
Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R: Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Fact. 2008, 7: 34- 10.1186/1475-2859-7-34.
Article
Google Scholar
Peternel S, Komel R: Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact. 2010, 9: 66- 10.1186/1475-2859-9-66.
Article
Google Scholar
Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S: Amyloid-like properties of bacterial inclusion bodies. J Mol Biol. 2005, 347: 1025-1037. 10.1016/j.jmb.2005.02.030.
Article
CAS
Google Scholar
Sabate R, Espargaro A, Saupe SJ, Ventura S: Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microb Cell Fact. 2009, 8: 56- 10.1186/1475-2859-8-56.
Article
Google Scholar
Garcia-Fruitos E, Sabate R, de Groot NS, Villaverde A, Ventura S: Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J. 2011, 278: 2419-2427. 10.1111/j.1742-4658.2011.08165.x.
Article
CAS
Google Scholar
Villar-Pique A, Ventura S: Modeling amyloids in bacteria. Microb Cell Fact. 2012, 11: 166- 10.1186/1475-2859-11-166.
Article
CAS
Google Scholar
Espargaro A, Villar-Pique A, Sabate R, Ventura S: Yeast prions form infectious amyloid inclusion bodies in bacteria. Microb Cell Fact. 2012, 11: 89- 10.1186/1475-2859-11-89.
Article
CAS
Google Scholar
Villar-Pique A, Espargaro A, Sabate R, de Groot N, Ventura S: Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microb Cell Fact. 2012, 11: 55- 10.1186/1475-2859-11-55.
Article
CAS
Google Scholar
Invernizzi G, Aprile FA, Natalello A, Ghisleni A, Penco A, Relini A, Doglia SM, Tortora P, Regonesi ME: The relationship between aggregation and toxicity of polyglutamine-containing ataxin-3 in the intracellular environment of escherichia coli. PLoS One. 2012, 7: e51890- 10.1371/journal.pone.0051890.
Article
CAS
Google Scholar
Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz R, Aris A, Ventura S, Villaverde A: Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Fact. 2005, 4: 27- 10.1186/1475-2859-4-27.
Article
Google Scholar
Garcia-Fruitos E, Seras-Franzoso J, Vazquez E, Villaverde A: Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering. Nanotechnology. 2010, 21: 205101- 10.1088/0957-4484/21/20/205101.
Article
Google Scholar
Liovic M, Ozir M, Zavec A, Peternel S, Komel R, Zupancic T: Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells. Microb Cell Fact. 2012, 11: 67- 10.1186/1475-2859-11-67.
Article
CAS
Google Scholar
Villaverde A, Garcia-Fruitos E, Rinas U, Seras-Franzoso J, Kosoy A, Corchero JL, Vazquez E: Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Fact. 2012, 11: 76- 10.1186/1475-2859-11-76.
Article
CAS
Google Scholar
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, et al: Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact. 2008, 7: 11- 10.1186/1475-2859-7-11.
Article
Google Scholar
Ignatova Z: Monitoring protein stability in vivo. Microb Cell Fact. 2005, 4: 23- 10.1186/1475-2859-4-23.
Article
Google Scholar
Garcia-Fruitos E, Aris A, Villaverde A: Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol. 2007, 73: 289-294. 10.1128/AEM.01952-06.
Article
CAS
Google Scholar
Wu W, Xing L, Zhou B, Lin Z: Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact. 2011, 10: 9- 10.1186/1475-2859-10-9.
Article
CAS
Google Scholar
Zhou B, Xing L, Wu W, Zhang X-E, Lin Z: Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Fact. 2012, 11: 10- 10.1186/1475-2859-11-10.
Article
CAS
Google Scholar
Kim W, Hecht MH: Sequence determinants of enhanced amyloidogenicity of Alzheimer A beta 42 peptide relative to A beta 40. J Biol Chem. 2005, 280: 35069-35076. 10.1074/jbc.M505763200.
Article
CAS
Google Scholar
Kim W, Kim Y, Min J, Kim DJ, Chang YT, Hecht MH: A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. ACS Chem Biol. 2006, 1: 461-469. 10.1021/cb600135w.
Article
CAS
Google Scholar
Kim W, Hecht MH: Mutations enhance the aggregation propensity of the Alzheimer’s A beta peptide. J Mol Biol. 2008, 377: 565-574. 10.1016/j.jmb.2007.12.079.
Article
CAS
Google Scholar
Zhao Y, He W, Liu WF, Liu CC, Feng LK, Sun L, Yan YB, Hang HY: Two distinct states of escherichia coli cells that overexpress recombinant heterogeneous beta-galactosidase. J Biol Chem. 2012, 287: 9259-9268. 10.1074/jbc.M111.327668.
Article
CAS
Google Scholar
Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, Ventura S: Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta. 2008, 1783: 1815-1825. 10.1016/j.bbamcr.2008.06.007.
Article
CAS
Google Scholar
Ignatova Z, Gierasch LM: Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA. 2004, 101: 523-528. 10.1073/pnas.0304533101.
Article
CAS
Google Scholar
Ignatova Z, Gierasch LM: A Fluorescent Window Into Protein Folding and Aggregation in Cells. Biophysical Tools for Biologists, Vol 2: In Vivo Techniques. Edited by: Correia JJ, Detrich HW. 2008, 59-70. Methods in Cell Biology], Elsevier Academic Press Inc, San Diego
Chapter
Google Scholar
Espargaro A, Sabate R, Ventura S: Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Mol Biosyst. 2012, 8: 2839-2844. 10.1039/c2mb25214g.
Article
CAS
Google Scholar
Ami D, Bonecchi L, Cali S, Orsini G, Tonon G, Doglia SM: FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim Biophys Acta. 2003, 1624: 6-10. 10.1016/j.bbagen.2003.09.008.
Article
CAS
Google Scholar
Ami D, Natalello A, Taylor G, Tonon G, Doglia SM: Structural analysis of protein inclusion bodies by Fourier transform infrared microspectroscopy. Biochim Biophys Acta. 2006, 1764: 793-799. 10.1016/j.bbapap.2005.12.005.
Article
CAS
Google Scholar
Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM: Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett. 2005, 579: 3433-3436. 10.1016/j.febslet.2005.04.085.
Article
CAS
Google Scholar
Ami D, Natalello A, Doglia SM: Fourier transform infrared microspectroscopy of complex biological systems: From intact cells to whole organisms. Intrinsically Disordered Protein Analysis: Volume 1, Methods and Experimental Tools. Edited by: Uversky VN, Dunker AK. 2012, 85-100. Methods in Molecular Biology, New York: Humana Press
Chapter
Google Scholar
Ami D, Natalello A, Schultz T, Gatti-Lafranconi P, Lotti M, Doglia SM, de Marco A: Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochim Biophys Acta. 2009, 1794: 263-269. 10.1016/j.bbapap.2008.10.015.
Article
CAS
Google Scholar
Oberg K, Chrunyk BA, Wetzel R, Fink AL: Native-like secondary structure in interleukin-1-beta inclusion-bodies by attenuated total reflectance ftir. Biochemistry. 1994, 33: 2628-2634. 10.1021/bi00175a035.
Article
CAS
Google Scholar
Doglia SM, Ami D, Natalello A, Gatti-Lafranconi P, Lotti M: Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol J. 2008, 3: 193-201. 10.1002/biot.200700238.
Article
CAS
Google Scholar
Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R: Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol. 2008, 6: e195- 10.1371/journal.pbio.0060195.
Article
Google Scholar
Wasmer C, Benkemoun L, Sabate R, Steinmetz MO, Coulary-Salin B, Wang L, Riek R, Saupe SJ, Meier BH: Solid-State NMR Spectroscopy Reveals that E. coli Inclusion Bodies of HET-s(218-289) are Amyloids. Angew Chem Int Ed. 2009, 48: 4858-4860. 10.1002/anie.200806100.
Article
CAS
Google Scholar
Wang L, Schubert D, Sawaya MR, Eisenberg D, Riek R: Multidimensional structure-activity relationship of a protein in its aggregated states. Angew Chem Int Ed. 2010, 49: 3904-3908. 10.1002/anie.201000068.
Article
CAS
Google Scholar
Curtis-Fisk J, Spencer RM, Weliky DP: Native conformation at specific residues in recombinant inclusion body protein in whole cells determined with solid-state NMR spectroscopy. J Am Chem Soc. 2008, 130: 12568-12569. 10.1021/ja8039426.
Article
CAS
Google Scholar
Lesley SA, Graziano J, Cho CY, Knuth MW, Klock HE: Gene expression response to misfolded protein as a screen for soluble recombinant protein. Protein Eng. 2002, 15: 153-160. 10.1093/protein/15.2.153.
Article
CAS
Google Scholar
Schultz T, Martinez L, de Marco A: The evaluation of the factors that cause aggregation during recombinant expression in E. coli is simplified by the employment of an aggregation-sensitive reporter. Microb Cell Fact. 2006, 5: 28- 10.1186/1475-2859-5-28.
Article
Google Scholar
Kraft M, Knüpfer U, Wenderoth R, Pietschmann P, Hock B, Horn U: An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli. Appl Microbiol Biotechnol. 2007, 75: 397-406. 10.1007/s00253-006-0815-6.
Article
CAS
Google Scholar