Skip to main content

Table 1 Model processes

From: A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures

Equation
\(Feeding = c_{F}\cdot F_{0}\cdot { \exp }(\mu \cdot (t - t_{F} ))\)
\(Uptake = v_{G} \cdot \frac{[G]}{{k_{G} + [G]}} \cdot B\cdot\left( {1 - \frac{[P]}{{[P]_{max} }}} \right)\cdot(1 - n_{E} )\cdot lag\)
\(Respiration_{P} = v_{RP} \cdot \frac{[P]}{{k_{RP} + [P]}} \cdot B \cdot\left( {1 - n_{E} } \right)\cdot(1 - n_{I} )\cdot ge\)
\(Fermentation = v_{F}\cdot \frac{[P]}{{k_{F} + [P]}}\cdot B\cdot (1 - n_{E} )\cdot(1 - n_{I} )\cdot mo\)
\(Respiration_{E} = v_{RE}\cdot \frac{[E]}{{k_{RE} + [E]}}\cdot B \cdot (1 - n_{E} )\cdot(1 - n_{I} )\cdot ge\)
\(Accumulation = v_{A} \cdot\frac{[P]}{{k_{A} + [P]}}\cdot B\cdot\left( {1 - \frac{R}{{R_{max} }}} \right)\cdot mo\)
\(Secretion = \rho\cdot \left( {\eta_{RP} \cdot Respiration_{P} + \eta_{RE} \cdot Respiration_{E} + \eta_{FP} \cdot Fermentation} \right)\)
\(Death_{P} = d \cdot \delta \cdot P;\)
\(Death_{R} = d \cdot \delta \cdot R;\)
\(Death_{CM} = d \cdot \delta \cdot C_{M}\)
  1. All symbols are described in Tables 2, 3 and 4.