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AdpA, a developmental regulator, 
promotes ε‑poly‑l‑lysine biosynthesis 
in Streptomyces albulus
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Abstract 

Background:  AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, 
but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine 
(ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating tran-
scription factors in Streptomyces.

Results:  In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and mor-
phological differentiation and effectively promoted ε-PL production and sporulation in Streptomyces albulus NK660 
by heterologously expressing adpA from S. neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA 
homolog named AdpASa in S. albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and 
morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their 
phylogenetic relationships and regulatory roles in S. albulus, and AdpASn was demonstrated to have the strongest 
ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S. albulus 
heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified 
the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time 
quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, 
zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause 
the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skel-
etons and ATP for ε-PL biosynthesis in S. albulus.

Conclusions:  Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosyn-
thesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL 
biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply 
valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological 
differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and 
other valuable secondary metabolites in Streptomyces.
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Background
Two notable characteristics of Streptomyces species are 
the ability to produce multitudinous valuable second-
ary metabolites possessing diverse biological activities 
and a complex life cycle, including the generation of 
vegetative mycelium, aerial mycelium and spores during 
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development [1–3]. The processes of secondary metabo-
lism and morphological differentiation are tightly con-
trolled by multiple levels of transcriptional regulators 
that include cluster-situated, pleiotropic, and global reg-
ulators in response to numerous physiological and envi-
ronmental conditions [3–6].

The AraC family transcription factor known as AdpA is 
universally present in Streptomyces, is able to amplify the 
A-factor signal and is a global regulator of morphologi-
cal differentiation and secondary metabolism in Strep-
tomyces [7–10]. AdpA contains a ThiJ/PfpI/DJ-1-like 
(GATase-1) domain for dimerization and an AraC/XylS 
family DNA-binding domain, located at its N- and C-ter-
mini, respectively, and has an average length of 320–345 
aa in Actinobacteria [7, 11]. It was demonstrated that 
the AdpA regulon encompassed 100 to 500 genes in dif-
ferent Streptomyces species [10, 12, 13]. AdpA plays a 
central role in the regulation of morphological differen-
tiation in most Streptomyces species [3, 14–18]. On the 
one hand, AdpA positively regulates the transcription of 
direct targets involved in morphological differentiation in 
Streptomyces griseus, such as ssgA encoding a protein that 
forcefully influences septum formation, σAdsA, the ECF 
sigma factor required for aerial mycelium formation, and 
amfR, which encodes a protein essential for aerial myce-
lium formation, and AdpA can also regulate chromo-
some replication by binding to the region close to OriC 
[1, 2, 19, 20]. On the other hand, AdpASx from Strepto-
myces xiamenensis 318 was reported to negatively regu-
late morphological differentiation [3]. At the same time, 
AdpA is capable of influencing the transcription of sec-
ondary metabolism genes both directly [16, 21, 22] and 
indirectly [11, 17, 18, 23–27] and was used to successfully 
activate secondary metabolism. The expression of adpA 
is subject to a noteworthy regulation of the translation 
level for the UUA codon within the adpA transcript, in 
addition to being controlled by the repressor protein 
ArpA, the hormone-like molecule and asRNA [7]. The 
UUA codon is the rarest codon in the GC-rich genomes 
of Actinobacteria and is present in approximately 2–3% 
of gene transcripts in any one Streptomyces, typically, 
based on the information from four sequenced genomes 
[28, 29]. The tRNALeu UAA​ that is capable of reading the 
UUA codon efficiently is only encoded by bldA, and its 
delayed occurrence limits the expression of TTA-con-
taining genes during the cell cycle [14, 28, 30].

The extracellular metabolite ε-poly-l-lysine (ε-PL) is 
a kind of amino acid homopolymer composed of 25–35 
l-lysine residues with isopeptide bonds between the 
α-carboxyl and ε-amino groups and is mainly produced 
by the Streptomycetaceae family [31–34]. ε-PL exhib-
its antimicrobial effects against a broad spectrum of 
microorganisms, including bacteria, yeasts, molds and 

some viruses, due to its polycationic nature [31, 35]. The 
desirable properties of ε-PL, including its water solubil-
ity, thermal stability, biodegradability, broad-spectrum 
antimicrobial activity and nontoxicity to humans and the 
environment, make it suitable for use in the cosmetic, 
pharmaceutical and electronics industries, and it is espe-
cially widely applied as a natural and safe food preserva-
tive in Korea, Japan, the USA, China and other countries 
[36, 37]. Moreover, ε-PL can also be applied in weight loss 
products and health care products and can be used as a 
drug carrier, gene carrier, biochip, bioelectronic coating 
agent and new water absorbent material [38, 39].

Although ε-PL has been industrially produced, the 
low fermentation efficiency and high cost still need to be 
resolved [40]. The nutrition feeding [41], medium opti-
mization [42], dissolved oxygen regulation [43], pH con-
trol strategy [44, 45], solid-state fermentation [46], in situ 
product removal fermentation [47], fermentation with 
immobilized cells [48], atmospheric and room tempera-
ture plasma (ARTP) mutagenesis [49], genome shuffling 
[49], ribosome engineering [49–51] and molecular biol-
ogy operations in regard to vgb (the Vitreoscilla hemo-
globin gene) [52, 53], amtB (the ammonium transporter 
gene) [54], pls (the ε-PL synthetase gene) [39, 55], and 
dapA (the dihydrodipicolinate synthase gene) [56] have 
been developed to increase the yield of ε-PL. It is recog-
nized that the precise controls of primary and secondary 
metabolism development and their switch are pivotal to 
properly produce invaluable natural products in Strep-
tomyces, but few studies have focused on increasing the 
production of ε-PL effectively by manipulating transcrip-
tion factors in Streptomyces thus far.

In this work, we revealed the regulatory roles of Strep-
tomyces AdpA homologs in ε-PL biosynthesis and mor-
phological differentiation and effectively promoted ε-PL 
production and sporulation in S. albulus NK660 by 
sieving out AdpASn from five AdpA homologs, includ-
ing the novel AdpA homolog (AdpASa) identified here. 
Subsequently, we clarified the mechanism by which 
AdpASn affected ε-PL biosynthesis and its effect on the 
ε-PL polymerization degree in S. albulus. Furthermore, 
we identified seven target genes directly regulated by 
AdpASn in the central metabolic pathways and acetate 
metabolism pathway of S. albulus NK660. We hope this 
study will provide a reference for the enhanced produc-
tion of ε-PL and other valuable secondary metabolites in 
Streptomyces.

Materials and methods
Strains, plasmids, and culture conditions
All the bacterial strains and plasmids used in this 
study are listed in Table 1, and the primers are listed in 
Table S1. The culture conditions of S. albulus NK660 and 
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its derivatives were as described previously [52]. Escheri-
chia coli DH5α and E. coli BL21 (DE3) were used as the 
cloning host and the expression host, respectively. We 
used E. coli WM6026 [57] as a nonmethylating plasmid 
donor strain to perform intergeneric conjugation with 
S. albulus NK660. E. coli strains were grown in Luria–
Bertani medium at 37  °C. When necessary, 30  μg/mL 
apramycin, 50  μg/mL kanamycin and 19  μg/mL diami-
nopimelic acid were added.

Construction of S. albulus mutant strains
For overexpression of adpASa, the DNA fragment con-
taining the adpASa encoding region was amplified from 
the genome DNA of S. albulus NK660 with the primer 
pair adpA-F/-R. This DNA fragment was joined with 
the synthesized promoter PermE* (GenScript, Nanjing, 
China) by overlap-PCR. Under the catalysis of Exnase 
II (Vazyme, Nanjing, China), the generated DNA frag-
ment was ligated into the vector pSET152 [58] that was 
digested with XbaI to generate the adpASa overexpres-
sion vector pSET152-adpASa, which was then trans-
formed into S. albulus NK660 to construct the adpASa 
overexpression strain S. albulus NKA. To construct the 
heterogeneous expression vectors, DNA fragments con-
taining the promoter PermE* and one of the genes encod-
ing AdpASd (AFX97763.1), AdpA-SH (WP_018531726.1), 

AdpASn (WP_055538474.1) or AdpA-C 
(WP_007264197.1) were synthesized (GenScript, Nan-
jing, China). Similarly, the obtained DNA fragments were 
ligated into the integrative vector pSET152 digested with 
XbaI by Exnase II (Vazyme, Nanjing, China), successively 
generating the vectors pSET152-adpASd, pSET152-adpA-
SH, pSET152-adpASn and pSET152-adpA-C, which were 
then transformed into S. albulus NK660 to construct the 
heterogenous overexpression strains S. albulus SDA, S. 
albulus SHA, S. albulus SNA and S. albulus SCA. Fur-
thermore, to investigate the effect of pSET152, the empty 
plasmid pSET152 was also integrated into the S. albu-
lus NK660 genome, generating S. albulus SET. All the 
constructed mutants were verified by PCR and DNA 
sequencing with the primer pair SET-F/-R. DNA manip-
ulations were carried out using standard procedures for 
Streptomyces and E. coli [59, 60].

RNA sample preparation and RT–PCR, and RT–qPCR 
analysis
Total mRNA was isolated from S. albulus NK660 and its 
derivatives after 29 h of growth in M3G medium using a 
SPARKeasy Improved Bacteria RNA kit according to the 
manufacturer’s protocol (SparkJade, Shandong, China). 
Isolated RNA was reverse transcribed using HiScript® 
II Reverse Transcriptase (Vazyme, Nanjing, China). For 

Table 1  Strains and plasmids used in this study

Strain or plasmid Characteristics Source or reference

Strains

S. albulus

 NK660 Wild type (WT), ε-poly-l-lysine producer [34]

 SET Wild-type strain carrying pSET152 This work

 NKA Wild-type strain carrying pSET152-adpASa This work

 SDA Wild-type strain carrying pSET152-adpASd This work

 SHA Wild-type strain carrying pSET152-adpA-SH This work

 SNA Wild-type strain carrying pSET152-adpASn This work

 SCA Wild-type strain carrying pSET152-adpA-C This work

E. coli

 DH5α General cloning host TaKaRa

 BL21(DE3) Host for expression of AdpASn TransGen Biotech

 WM6026 Donor strain for conjugation between E. coli and Streptomyces [57]

Plasmids

 pSET152 Integrative vector based on φC31 integrase [58]

 pSET152-adpASa pSET152 derivative for overexpression of adpASa This work

 pSET152-adpASd pSET152 derivative for expression of adpASd This work

 pSET152-adpA-SH pSET152 derivative for expression of adpA-SH This work

 pSET152-adpASn pSET152 derivative for expression of adpASn This work

 pSET152-adpA-C pSET152 derivative for expression of adpA-C This work

 pET-28a ( +) E. coli expression vector Novagen

 pET-SNA adpASn cloned in pET-28a ( +) This work
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RT–PCR, the Genome DNA clearance column (a compo-
nent of SPARKeasy Improved Bacteria RNA kit; Spark-
Jade, Shandong, China)-treated RNA samples without 
reverse transcription were used as the negative con-
trols to verify the absence of DNA contamination. The 
transcription levels of genes were determined by RT–
qPCR (using the primer pairs listed in Additional file 1: 
Table  S1) in triplicate for each transcript using ChamQ 
Universal SYBR qPCR Master Mix (Vazyme, Nanjing, 
China). The housekeeping gene hrdB was used for nor-
malizing samples as the internal control with quantifica-
tion by the 2-∆∆CT method [61].

Scanning electron microscopy
S. albulus NK660 and its derivatives grown on mannitol 
soya flour (MSF) agar plates at 30  °C were observed by 
scanning electron microscopy (SEM). For specimen prep-
aration, coverslips were embedded in agar inoculated 
with the strains at an angle and lifted out gently after 2 
or 3 days of incubation for follow-up operation. Samples 
were fixed with 2.5% glutaraldehyde solution overnight, 
washed three times with phosphate buffer, subsequently 
dehydrated by an ethanol concentration gradient (30%, 
50%, 70%, 85%, 95% and 100%), freeze-dried (LGJ-12, 
SongYuanHuaXing), coated in gold, and then examined 
by SEM (MERLIN Compact, ZEISS).

Flask culture and analytical procedures
albulus NK660 and its derivatives were inoculated in 
M3G medium at 30 °C with shaking (180 rpm) for 24 h as 
seed cultures, and then 5% (v/v) of the inocula were inoc-
ulated into M3G medium and cultured for 5 days at 30 °C 
with shaking (180  rpm). Precipitates of samples were 
harvested at specific time points and washed twice with 
distilled water. Then, they were dried by a freeze dryer 
(LGJ-12, SongYuanHuaXing) and subsequently weighed 
for the measurement of dry cell weights (DCWs). The 
supernatant of each sample was harvested at certain time 
points and used to determine the concentration of ε-PL 
on the basis of the procedures described by Itzhaki [52]. 
All cultivations were performed at least three times.

Microscale thermophoresis assay
The DNA fragments corresponding to the promoter 
regions of genes zwf, pyk2 and pepc were amplified and 
labeled using the FAM-labeled primer pairs zwf-F/-R, 
pyk2-F/-R and pepc-F/-R, and they were subsequently 
recovered by the Multifunctional DNA Purification and 
Recovery Kit (Aidlab, Beijing, China). The purified His-
tagged AdpASn (GenScript, Nanjing, China) was concen-
trated by centrifugal filters (Merck Milliproe, Germany). 
For each dissociation constant measurement, the 32 μM 
initial concentration of AdpASn underwent a 16-step 

serial twofold dilution with PBS buffer, and the 16 diluted 
protein solutions were mixed with equal labeled DNA 
fragments. The mixtures were incubated for 30  min at 
25 °C and transferred to standard Monolith NT.115 capil-
laries for follow-up measurements. The experiments were 
run at 40% excitation with high microscale thermopho-
resis (MST) power at room temperature on a Monolith 
NT.115 instrument (NanoTemper Technologies GmbH, 
Munich, Germany) [62]. The data were obtained using 
MO. Control 1.5.3 (NanoTemper Technologies GmbH, 
Munich, Germany) and analyzed using MO. Affinity 
Analysis 2.3 (NanoTemper Technologies GmbH, Munich, 
Germany).

Molecular weight determination of ε‑PL
The operations to separate and purify ε-PL from fer-
mentation cultures were performed as described pre-
viously [34]. The purified ε-PL samples were analyzed 
using MALDI-TOF–MS with an Autoflex III TOF/TOF 
200 (Bruker Corporation) instrument with α-cyano-4-
hydroxycinnamic acid (CHCA) as the matrix [63].

Multiple sequence alignment and phylogenetic analysis
The homologous sequence database search was per-
formed using BLASTp (https://​blast.​ncbi.​nlm.​nih.​gov/​
Blast.​cgi). The multiple sequence alignment of the AdpA 
homologs was executed using the online available tool 
CLUSTALW (https://​www.​genome.​jp/​tools-​bin/​clust​
alw) and analyzed by ESPript 3.0 (http://​espri​pt.​ibcp.​fr/​
ESPri​pt/​cgi-​bin/​ESPri​pt.​cgi). Phylogenetic analyses were 
conducted in MEGA-X using the maximum parsimony 
method [64, 65].

Results
Identification of a novel AdpA homolog AdpASa in S. 
albulus NK660
We identified a novel AdpA homolog in S. albulus 
NK660 because the protein (GenBank accession no. 
AIA03759.1) shared 80% and 89% amino acid identi-
ties with the AdpA homologs of S. griseus and S. coe-
licolor, respectively, and designated it AdpASa. AdpASa 
was found between the upstream gene encoding a puta-
tive universal stress protein and the downstream gene 
ornA that encodes a putative oligoribonuclease in S. 
albulus NK660 based on computer-assisted analysis 
(Additional file 1: Fig. S1A). This gene arrangement in 
S. albulus NK660 was similar to those found in S. gri-
seus, Streptomyces coelicolor, Streptomyces chattanoo-
gensis and Streptomyces clavuligerus (Additional file 1: 
Fig. S1A) [17, 25, 66]. Similar to most AdpA ortholo-
gous proteins, AdpASa possessed a ThiJ/pfpI/DJ-1-like 
domain for dimerization and a DNA-binding domain 
with two AraC/XylS family helix-turn-helix motifs 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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(Fig.  1). It was reported that the Arg262 and Arg266 
residues of AdpASg could directly recognize the target 
DNA sequences of AdpASg [67], and AdpASa retained 
these two arginine residues at the corresponding posi-
tions of the HTH1 motif (Fig.  1). Different from most 

AdpA proteins, there were two UUA codons in adpASa, 
and they were located in front of the ThiJ/PfpI/DJ-
1-like dimerization domain and at the ʻclassicalʼ posi-
tion between the ThiJ/pfpI/DJ-1-like domain and HTH 

Fig. 1  Amino acid alignment among AdpASa, AdpASd, AdpA-SH, AdpASn, AdpA-C and the well-characterized AdpASg. The ThiJ/PfpI/DJ-1 like domain 
for dimerization and two AraC/XylS family helix-turn-helix (HTH) motifs are marked. The locations of the Leu residues translated by the UUA codons 
are colored orange, and the locations of Arg-262 and Arg-266 residues that directly recognize the target DNA sequences of AdpASg are marked with 
the blue stars. BAA86265.1, AdpASg; AFX97763.1, AdpASd; WP_018531726.1, AdpA-SH; WP_055538474.1, AdpASn; WP_007264197.1, AdpA-C; and the 
blue font AIA03759.1 is the endogenous AdpASa in S. albulus NK660
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domains (Fig. 1), indicating that the translation level of 
adpASa could be affected by bldA [7].

To show the relationship between AdpASa and other 
AdpA proteins, a phylogenetic tree that was divided into 
three clades was constructed, and AdpASa was found in 
clade I (Additional file 1: Fig. S1B). AdpASd was reported 
to positively regulate toyocamycin biosynthesis and mor-
phological differentiation in Streptomyces diastatochro-
mogenes 1628 [68], and it was found in the same subclade 
as AdpASa (Additional file  1: Fig. S1B), which indicates 
that AdpASa may play a similar role in morphological 
differentiation and secondary metabolism in S. albulus 
NK660.

AdpASa is an activator of both morphological 
differentiation and ε‑PL production in S. albulus
To study the regulatory role of AdpASa in S. albulus, we 
constructed an adpASa overexpression strain, S. albulus 
NKA (Table 1 and Additional file 1: Fig. S2A). The con-
struction of S. albulus NKA was further confirmed by 
PCR (Additional file  1: Fig. S2B) and DNA sequencing. 
RT–qPCR analysis showed that the adpASa transcription 
level in S. albulus NKA was approximately sixfold that 
in WT, indicating that adpASa was successfully overex-
pressed in S. albulus NKA (Additional file 1: Fig. S2C).

To clarify the effect of AdpASa on development in S. 
albulus, the aerial mycelium formation and sporulation 
of S. albulus NKA were compared with those of the con-
trol strain S. albulus SET by plate streaking and SEM. 
As shown in Fig. 2, the S. albulus NKA more abundantly 
sporulated than S. albulus SET, of which colonies on Day 
3 consisted of only aerial hyphae and a few spores, while 
colonies of S. albulus NKA had already made a large 
amount of mature spores. These findings indicate that 
AdpASa acts as an activator of development in S. albu-
lus, which is similar to the function of AdpAch in S. chat-
tanoogensis [17], indicating that AdpA homologs play 
a primary role in the morphological differentiation of 
Streptomyces.

To investigate the effect of AdpASa on ε-PL biosyn-
thesis in S. albulus, we performed flask-shaking fermen-
tation between S. albulus NKA and S. albulus SET and 
finally measured their own ε-PL production and biomass 
(DCW) separately. On the one hand, when cultured for 
100 h, S. albulus NKA (0.65 g/L, 2.96 mg g−1 h−1) sepa-
rately had a 1.5-fold and 2.1-fold increase in ε-PL pro-
duction and specific ε-PL formation rates compared with 
S. albulus SET (0.42 g/L, 1.39 mg g−1 h−1) (Fig. 3A and 
Additional file 1: Fig. S2D), which indicated that AdpASa 
positively regulated ε-PL production in S. albulus. On 
the other hand, the biomass of S. albulus NKA was 26.2% 
lower than that of S. albulus SET according to the results 
shown in Fig. 3A.

Therefore, to further clarify the specific process by 
which the biomass and ε-PL of S. albulus SET and S. alb-
ulus NKA accumulated, we measured the time courses of 
biomass and ε-PL yield in these two strains. The results 
showed that AdpASa promoted the production of ε-PL in 
S. albulus from several aspects. First, because of the same 
fermentation time (100 h) required for S. albulus SET and 
S. albulus NKA to obtain their own peak ε-PL production 
and the fact that the overexpression of adpASa caused an 
earlier time to start producing ε-PL (Fig. 3B), the overex-
pression of adpASa could prolong the total time that ε-PL 
was accumulated even though the actual total time of fer-
mentation did not change. Second, the overexpression of 
adpASa might solve some rate-limiting problems of ε-PL 
production in S. albulus. This is because S. albulus NKA 
missed the rate-limiting period in which ε-PL accumu-
lated slowly and maintained a sustained increase in ε-PL 
yield during the 100-h culture in fermentation medium, 
unlike S. albulus SET (Fig.  3B). Third, the ε-PL yield of 
S. albulus NKA remained above that of S. albulus SET 
during the whole fermentation process (Fig. 3B), indicat-
ing that AdpASa was capable of enhancing the ability to 
produce ε-PL in S. albulus during the whole fermentation 

NKA

SET

Day 1 Day 2 Day 3 Day 4

Day 5 Day 6 Day 7 Day 8

(A)

Day 2

SET

NKA

Day 3

5μm

5μm

5μm

5μm

(B)

Fig. 2  Effects of AdpASa on morphological development in S. albulus. 
A Phenotypes of S. albulus SET and S. albulus NKA grown on MSF agar 
plates at 30 ℃. B SEM showing morphological development of S. 
albulus SET and S. albulus NKA grown on MSF agar plates
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process. All these regulatory functions of AdpASa were 
collectively taken together to promote the production of 
ε-PL in S. albulus. However, as shown in Fig. 3C, the bio-
mass of S. albulus SET remained higher than that of S. 
albulus NKA during the whole fermentation process.

In conclusion, AdpASa was identified as a pleiotropic 
regulator involved in morphological development, sec-
ondary metabolism and growth of Streptomyces. AdpASa 
acts as an activator for sporulation and ε-PL biosynthe-
sis in S. albulus, which agrees with the conclusion drawn 
from the phylogenetic analysis of AdpASa before (Addi-
tional file 1: Fig. S1B).

Molecular sequences and phylogenetic relationships 
of adpA genes
Because AdpASa is an activator for morphological differ-
entiation and ε-PL biosynthesis in S. albulus, we expected 
to further promote morphological differentiation and 
obtain a higher ε-PL production by the expression of 

suitable heterologous adpA in S. albulus. Considering 
that the expression of adpA is restricted to the level at 
which the rare UUA codon within the adpA transcript 
is translated to leucyl, four adpA genes were selected to 
be heterologously expressed in S. albulus NK660 accord-
ing to their diversities of the number and position of 
UUA codons. These four adpA genes were separate from 
S. diastatochromogenes 1628 (adpASd), Streptomyces 
sp. HmicA12 (adpA-SH), Streptomyces neyagawaensis 
NRRLB-3092 (adpASn) and Streptomyces sp. C (adpA-
C). Similar to the UUA codon of adpASg, the UUA codon 
of adpASd is located in the ʻclassicalʼ position between 
the ThiJ/PfpI/DJ-1-like dimerization domain and HTH 
domains (Fig. 1). The UUA codon of adpA-SH is near the 
beginning of the AraC/XylS-type DNA-binding domain, 
and that of adpASn is located close to the stop codon, 
while adpA-C has no UUA codon at all (Fig. 1). Identical 
to endogenous AdpASa, the four heterologous AdpA pro-
teins studied in this paper also have a ThiJ/pfpI/DJ-1-like 
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cultured in M3G medium for 100 h. **P < 0.01 (Student’s t-test). B Time course of ε-PL yield in S. albulus SET and S. albulus NKA cultured in M3G 
medium. C Growth curves (biomass presented by dry cell weight) of S. albulus SET and S. albulus NKA cultured in M3G medium
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domain for dimerization and a DNA-binding domain 
with two AraC/XylS family helix-turn-helix motifs 
(Fig. 1). Moreover, these four AdpA proteins all retain the 
two arginine residues at the positions corresponding to 
the AdpASg Arg-262 and Arg-266 residues that directly 
recognize the target DNA sequences of AdpASg (Fig.  1) 
[67]. As mentioned above, AdpASd was found in clade I 
of the phylogenetic tree, similar to AdpASa (Additional 
file 1: Fig. S1B). As the regulatory roles of AdpASd in S. 
diastatochromogenes 1628 were reported before [68], we 
expected to let AdpASd promote morphological develop-
ment and secondary metabolism in S. albulus by heterol-
ogously expressing AdpASd. The other three heterologous 
AdpA proteins that we studied were all located in clade 
II. AdpA-SH and AdpA-C belonged to subclade II-a, 
while AdpASn belonged to subclade II-b.

The adpASd, adpA-SH, adpASn and adpA-C genes were 
placed under the control of the strong promoter PermE*, 
and the heterogeneous overexpression strains S. albulus 
SDA, S. albulus SHA, S. albulus SNA and S. albulus SCA 
were constructed (Additional file  1: Fig. S3A). The PCR 
(Additional file 1: Fig. S3B) and DNA sequencing results 

confirmed that these heterologous adpA genes were suc-
cessfully inserted into S. albulus NK660 separately. As 
shown in Additional file  1: Fig. S3C, the results of RT–
PCR between the four mutants expressing heterologous 
adpA genes and the control strains showed that these 
four heterologous adpA genes were successfully tran-
scribed in mutants separately.

AdpASn is the strongest activator of both ε‑PL biosynthesis 
and morphological differentiation among all five AdpA 
homologs
To clarify the influences of these four heterologous adpA 
genes on development in S. albulus, plate streaking and 
SEM between the four mutants expressing heterologous 
adpA genes and the control strain S. albulus SET were 
performed. On the one hand, in comparison with S. alb-
ulus SET, the mutants S. albulus SDA, S. albulus SNA 
and S. albulus SCA more abundantly sporulated (Fig. 4). 
When incubated for 3  days, these three mutants had 
already developed many mature spores, whereas S. albu-
lus SET produced only aerial hyphae and a small quan-
tity of spores (Fig. 4B). On the other hand, heterologous 
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Fig. 4  Effects of AdpASd, AdpA-SH, AdpASn and AdpA-C on morphological development in S. albulus. A Phenotypes of four heterologous adpA 
genes expression mutants and S. albulus SET grown on MSF agar plates at 30 ℃. B SEM showing morphological development of four heterologous 
adpA genes expression mutants, S. albulus NKA and S. albulus SET grown on MSF agar plates for 3 days
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expression of the adpA-SH gene caused considerably 
delayed spore formation in S. albulus (Fig. 4). The colo-
nies of S. albulus SHA on Day 3 consisted of almost 
pure aerial hyphae, and there were no spores or sporu-
lation septa that could be observed (Fig. 4B). Among all 
the mutants, the S. albulus SNA strain most abundantly 
sporulated, and its colonies consisted of almost entirely 
mature spores when incubated for 3 days (Fig. 4B).

To further investigate the effects of the four heter-
ologous adpA genes on ε-PL biosynthesis in S. albulus, 
flask-shaking fermentation between the four mutants 
expressing heterologous adpA genes and the control 
strain S. albulus SET was performed. An expected result 
shown in Fig.  5 is that all four mutants expressing het-
erologous adpA genes obtained higher ε-PL yields than 
S. albulus SET to different degrees separately. Among 
the four mutants expressing heterologous adpA genes, 
the strain S. albulus SNA obtained the highest ε-PL yield 
of 0.82  g/L, which was approximately 3.6-fold that in 
S. albulus SET (Fig.  5). S. albulus SDA, S. albulus SHA 
and S. albulus SCA resulted in higher ε-PL yields than S. 
albulus SET, with increases of 139.1% (0.55  g/L), 65.2% 
(0.38  g/L) and 34.8% (0.31  g/L), respectively (Fig.  5). 
Among the four mutants expressing heterologous adpA 
genes, the strain S. albulus SNA obtained the highest bio-
mass of 2.84 g/L, which was similar to that of S. albulus 
SET, while the other three mutants S. albulus SDA, S. 
albulus SHA and S. albulus SCA exhibited 26.0%, 34.4%, 
and 20.6% declines in biomass compared with S. albulus 
SET, respectively (Fig. 5). These results indicate that the 

adpASn gene was the only gene that promoted ε-PL pro-
duction without any adverse impact on growth in S. albu-
lus among all the adpA genes studied in this paper.

In conclusion, the above results confirm that AdpA-
SH functions as a repressor of development but an acti-
vator of ε-PL production in S. albulus, whereas AdpASd, 
AdpASn and AdpA-C act as activators both for sporula-
tion and ε-PL biosynthesis in S. albulus, which is simi-
lar to the function of endogenous AdpASa in S. albulus 
NK660. It is worth mentioning that the heterologous 
AdpASn has the strongest abilities to positively regulate 
both morphological differentiation and ε-PL biosynthe-
sis without any adverse impact on growth in S. albulus 
among all the AdpA homologs studied in this paper.

AdpASn promotes ε‑PL production by affecting 
the transcription of key genes in ε‑PL biosynthesis
To further investigate the specific effect of AdpASn on 
ε-PL production in S. albulus, the transcription levels 
of seven key genes in ε-PL biosynthesis were measured. 
ε-PL biosynthesis involves the glycolytic pathway (EMP), 
pentose phosphate pathway (PPP), anaplerotic metabolic 
pathway, tricarboxylic acid (TCA) cycle, diaminopimelic 
acid pathway (DAP) and ε-PL assembly in Streptomyces 
(Fig.  6A) [51, 69, 70]. Glucose-6-phosphate dehydroge-
nase (G6PDH) is the rate-limiting enzyme of the pen-
tose phosphate pathway that is responsible for providing 
NADPH and pentoses used for cell growth as well as 
metabolite biosynthesis [70–72]. The fact that the tran-
scription level of zwf (the only gene encoding G6PDH 
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in S. albulus NK660) in S. albulus SNA was 20.8% lower 
than that in S. albulus NK660 (Fig.  6B) might cause a 
metabolic shift, which indicates that more carbon skele-
tons derived from glucose were used for glycolysis (EMP) 
than for cell growth (PPP) in comparison with S. albu-
lus NK660. As an important role in carbon metabolism, 
pyruvate kinase (PK) links glycolysis, gluconeogenesis 
and the TCA cycle and plays a central part in the genera-
tion of adenosine triphosphate (ATP) and precursors for 
specialized metabolites such as acetyl-CoA, amino acids, 
and organic acids [73]. There are two pyruvate kinases 
that are encoded by the genes pyk1 and pyk2 in S. albu-
lus NK660. As shown in Fig.  6B, the transcription level 
of pyk2 in S. albulus SNA was 1.9-fold that in S. albulus 
NK660, while no distinct difference was found in the 
transcription level of pyk1 between S. albulus SNA and 
S. albulus NK660, indicating that a larger amount of the 
direct precursor for acetyl-CoA and more ATP might be 
produced by the heterologous expression of the adpAsn 
gene. As one of the enzymes included in the phospho-
enolpyruvate-pyruvate-oxaloacetate node, which is a 
major branch in central carbon metabolism, phospho-
enolpyruvate carboxylase (PEPC) is capable of catalyzing 
the carboxylation of phosphoenolpyruvate to generate 
oxaloacetate for the TCA cycle and other metabolic pro-
cesses necessary for growth [74]. The transcription level 
of pepc in S. albulus SNA was 2.8-fold higher than that in 
S. albulus NK660 (Fig. 6B), indicating that AdpASn might 
prompt the replenishment of more TCA cycle interme-
diates for L-lysine biosynthesis and cause the generation 
of more carbon skeletons and ATP for ε-PL biosynthesis 
by affecting the transcription of pepc. ε-PL biosynthesis 

is catalyzed by Pls with ATP and the precursor l-lysine 
consumption [75], and aspartokinase (ASK) plays a key 
role in the biosynthesis of l-lysine [70]. Pls is a mem-
brane protein that directly generates ε-PL chain length 
diversity [76], and the expression of pls is regulated by the 
sigma factor HrdD, which initiates ε-PL biosynthesis in 
response to variations in pH in vivo [77]. The transcrip-
tion of ask, pls and hrdD showed no significant difference 
between S. albulus SNA and S. albulus NK660 (Fig. 6B). 
Taken together, these results demonstrated that AdpASn 
might cause the redistribution of metabolic flux in cen-
tral metabolism pathways by affecting the transcription 
of zwf, pyk2 and pepc, which subsequently produced 
more carbon skeletons and ATP for ε-PL biosynthesis in 
S. albulus.

AdpASn directly regulates the zwf, pyk2 and pepc genes
To determine whether AdpASn regulates the transcrip-
tion of genes zwf, pyk2 and pepc directly or through other 
regulators, the binding affinities of purified His-tagged 
AdpASn for the promoter regions of zwf, pyk2 and pepc 
were measured via MST that is based on thermophoresis, 
the directional movement of molecules in the tempera-
ture gradient (Fig. 7) [78]. As shown in Fig. 8A, the genes 
encoding transketolase (DC74_2409) and transaldolase 
(tal, DC74_2410) are cotranscribed with zwf, and they 
are all under the control of the promoter located in front 
of the gene encoding transketolase. The upstream genes 
encoding phosphate acetyltransferase (pta, DC74_5557) 
and acetate kinase (ack, DC74_5556) are cotranscribed 
with pyk2, and these three genes share a common pro-
moter (Fig.  8B). The MST results showed that AdpASn 
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was able to directly bind to the promoter regions of 
zwf, pyk2 and pepc with dissociation constants (Kd) of 
5.5 ± 0.3  µM, 4.9 ± 0.5  µM and 8.4 ± 0.9  µM, respec-
tively (Fig. 8). We measured the binding curves between 
the same concentration of BSA as AdpA and the studied 
DNA fragments as the negative controls, and no specific 
bindings to the DNA probes were detected.

Effect of AdpASn on the polymerization degree of ε‑PL
To elucidate whether AdpASn had any impact on the ε-PL 
polymerization degree in S. albulus, the relative molecu-
lar mass distributions of the ε-PL produced by S. albulus 
SNA and S. albulus NK660 were determined by MALDI-
TOF–MS. As shown in Fig. 9, the molecular mass distri-
bution of the ε-PL produced by S. albulus SNA ranged 
from 2453 to 4251  Da, corresponding to the polymeri-
zation degree of 19–33 L-lysine monomers, which was 
identical to that of S. albulus NK660. These results indi-
cate that AdpASn did not affect the polymerization degree 
of ε-PL in S. albulus.

Discussion
In general, morphological differentiation and secondary 
metabolism in Streptomyces are regulated by complex 
regulatory networks in response to numerous environ-
ments and growth conditions [3]. It was reported that 
Pls catalyzes l-lysine polymerization to generate ε-PL 
and that the expression of pls was regulated by the sigma 
factor HrdD, whereas other regulatory effects involved 
in ε-PL biosynthesis are still unknown. In this study, we 
identified a novel AdpA homolog named AdpASa in S. 
albulus NK660 and investigated the regulatory effects of 
endogenous AdpASa and four heterologous AdpA pro-
teins on ε-PL biosynthesis and morphological differen-
tiation in S. albulus. On the one hand, all five mutants 
separately integrated with different adpA genes produced 
more ε-PL than the control strain S. albulus SET, which 
indicated that they all acted as activators for ε-PL biosyn-
thesis in S. albulus, and the positive regulatory roles of 

Streptomyces AdpA homologs in ε-PL biosynthesis were 
revealed for the first time. On the other hand, the effects 
of AdpA homologs on morphological differentiation 
are diversified. Similar to the function of endogenous 
AdpASa, AdpASd, AdpASn and AdpA-C act as activators 
of sporulation in S. albulus, while AdpA-SH functions 
as a repressor of development. Therefore, AdpA-SH 
becomes the second one found to have a negative effect 
on morphological differentiation in addition to AdpASx 
from S. xiamenensis 318 [3], which indicates that our 
research provides additional evidence for the diversified 
regulation of AdpA homologs in morphological differ-
entiation. It is worth mentioning that the heterologous 
AdpASn possessed the strongest abilities to positively 
regulate both morphological differentiation and ε-PL bio-
synthesis without any adverse impact on growth in S. alb-
ulus among all the AdpA homologs studied in this paper, 
and the ε-PL yield of S. albulus SNA was approximately 
3.6-fold that of the control strain. Only AdpASd has been 
reported to have the regulatory roles in morphological 
differentiation and secondary metabolite toyocamycin 
biosynthesis in S. diastatochromogenes 1628 among the 
five AdpA proteins studied in this paper [68]. Therefore, 
our findings deepen insights into the regulatory roles of 
the Streptomyces AdpA family and reveal the functional 
similarity and discrepancy of AdpA homologs in Strepto-
myces, which may be connected with the similarity and 
discrepancy of AdpA homolog structures. On the one 
hand, the AdpA proteins studied in this paper possess 
sequence identities and structural similarities. The amino 
acid sequence of AdpASa has identities with those of 
AdpASd (99.05%), AdpA-SH (91.59%), AdpASn (49.07%) 
and AdpA-C (88.83%). The amino acid sequences of the 
ThiJ/PfpI/DJ-1-like dimerization domain and AraC/XylS-
type DNA-binding domain possess identities among the 
AdpA proteins studied in this paper, and these five AdpA 
proteins all retain the arginine residues at their positions 
corresponding to Arg-262 and Arg-266 that directly rec-
ognize the target DNA sequences in AdpASg (Fig. 1) [67], 

Fig. 8  Interaction between promoter regions of targets and AdpASn. A Interaction between promoter region of zwf and AdpASn. The upstream 
genes of zwf, intergenic distances among these three genes and their common promoter region are displayed. RT-PCR results confirmed that 
genes DC74_2409, tal and zwf shared common promoter: Lane M, DNA marker III; Lane 1,4,7,10, amplification products using primers p4/p5 with 
gDNA, cDNA, RNA from S. albulus SNA and ddH2O as templates, respectively; Lane 2,5,8,11, amplification products using primers p2/p3 with gDNA, 
cDNA, RNA from S. albulus SNA and ddH2O as templates, respectively; Lane 3,6,9,12, amplification products using primers p1/p3 with gDNA, cDNA, 
RNA from S. albulus SNA and ddH2O as templates, respectively. The binding curve for interaction between promoter region of zwf and AdpASn 
is indicated. B Interaction between promoter region of pyk2 and AdpASn. The upstream genes of pyk2, intergenic distances among these three 
genes and their common promoter region are displayed. RT-PCR results confirmed that genes pta, ack and pyk2 shared common promoter: Lane 
M, DNA marker III; Lane 1,4,7,10, amplification products using primers p9/p10 with gDNA, cDNA, RNA from S. albulus SNA and ddH2O as templates, 
respectively; Lane 2,5,8,11, amplification products using primers p7/p8 with gDNA, cDNA, RNA from S. albulus SNA and ddH2O as templates, 
respectively; Lane 3,6,9,12, amplification products using primers p6/p8 with gDNA, cDNA, RNA from S. albulus SNA and ddH2O as templates, 
respectively. The binding curve for interaction between promoter region of pyk2 and AdpASn is indicated. C The binding curve for interaction 
between promoter region of pepc and AdpASn. D Comparison of the binding affinities between AdpASn and the promoter regions of three target 
genes

(See figure on next page.)
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which indicates that these five AdpA proteins may have 
functional similarities in AdpA dimerization and DNA 
binding. On the other hand, the UUA codons of adpA 
genes studied here differed in number/position (Fig.  1), 
and the expression of adpA is restricted to the transla-
tion level of the rare leucyl UUA codon [7]. Because 

the mature tRNALeu UAA​ of Streptomyces is present only 
after the activation of secondary metabolism and onset 
of morphological differentiation, the translation of TTA-
containing genes can be interrupted by the absence of 
tRNALeu UAA​ during early stages of cell growth [79]. Con-
sidering that the transcription factors SlbR, ArfA, ArpA 
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and BldD directly regulate the transcription levels of 
adpA genes in addition to the autoregulation of adpA in 
various Streptomyces species [66, 80–82], the synthesized 
strong promoter PermE* was used to express the adpA 
genes studied here in S. albulus. It’s recently reported 
that the posttranslational regulation is a possible new 
mechanism that may regulate AdpA protein abundance 
in Streptomyces cells [83]. Consequently, we surmise that 
regulation at the translational level by the UUA codon 
and posttranslational regulation might cause different 
AdpA protein abundances in the mutants studied in this 
paper. The specific mechanism by which the structures 
of AdpA homologs affect their functions needs to be fur-
ther studied. Furthermore, the results of plate streaking 
(Additional file 1: Fig. S2E) showed that the introduction 
of plasmid pSET152 restricted morphological differentia-
tion in S. albulus, which might result from the inactiva-
tion of the gene (SCF4126) encoding a putative pirin-like 
protein caused by the integration of pSET152 into the 
putative φC31 attB site within this gene. It was reported 
that some phenotypic changes and a significant drop 
in spiramycin production were found in Streptomyces 
ambofaciens ATCC 23,877 because the integration of the 
φC31-based integrative plasmid caused the inactivation 

of the gene SAM23877_RS18305 (pirA) encoding pirin 
[84].

To clarify the mechanism by which AdpASn affects 
ε-PL biosynthesis in S. albulus, we studied the influences 
of AdpASn on the key genes involved in ε-PL biosynthe-
sis and the degree of ε-PL polymerization. The results of 
RT–qPCR and MST indicate that AdpASn activates the 
transcription of pyk2 and pepc but represses the tran-
scription of zwf by directly binding to their promoter 
regions with similar dissociation constants. ε-PL bio-
synthesis is involved in EMP, PPP, the anaplerotic meta-
bolic pathway, the TCA cycle, DAP and ε-PL assembly 
in Streptomyces (Fig. 6A) [51, 69, 70]. First, as the carbon 
flux flowing to the PPP is determined by G6PDH [71], 
the fact that AdpASn directly represses the transcription 
of zwf may cause the carbon skeletons derived from glu-
cose to be used more for glycolysis than for cell growth. 
It was reported that the deletion of either the zwf1 or 
zwf2 gene improved the production of actinorhodin and 
undecylprodigiosin (Red) with no influence on mycelium 
growth in Streptomyces lividans [85]. The Streptomyces 
rimosus M4018 strain obtained a higher production of 
OTC by the disruption of zwf1 or zwf2 [72]. Therefore, 
controlling the carbon flux of the PPP by adjusting the 
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transcription of genes encoding G6PDH may be a useful 
way to promote secondary metabolites in Streptomyces, 
which indicates that the influence of AdpASn on the ratio 
of carbon flux between the PPP and EMP might be one of 
the reasons for the enhanced ε-PL biosynthesis. Second, 
the effect of AdpASn on the transcription level of pyk2 (no 
distinct difference was found in the transcription level of 
pyk1 between S. albulus SNA and S. albulus NK660) may 
cause more provision of carbon skeletons for the TCA 
cycle and a higher level of ATP for the regulation of Pls 
catalytic function, which may contribute to increasing 
ε-PL production. It was confirmed that the pyk2::Tn5062 
transposon insertion mutant showed reduced polyketide 
coelimycin and Red yields in S. coelicolor, which indicates 
that the perturbation of central metabolism by adjusting 
the expression of genes encoding PK affects specialized 
metabolite biosynthesis [86]. Moreover, ε-PL synthesis 
depended on ATP, and the catalytic function of Pls was 
allosterically regulated by the concentration of intracellu-
lar ATP [87, 88]. Third, AdpASn may prompt the replen-
ishment of more TCA cycle intermediates for L-lysine 
biosynthesis and cause the generation of more carbon 
skeletons and ATP for ε-PL biosynthesis by directly acti-
vating the transcription of pepc. Finally, combined with 
the fact that the transcription levels of ask, pls and hrdD 
showed no significant differences between S. albulus 
SNA and S. albulus NK660 (Fig.  6B), all these results 
above demonstrate that AdpASn may cause the redistri-
bution of metabolic flux in central metabolism pathways 
by directly regulating the transcription of zwf, pyk2 and 
pepc, which subsequently makes for more carbon skele-
tons and ATP for ε-PL biosynthesis in S. albulus. Further-
more, the molecular weight of ε-PL strongly affects its 
biological functions [38, 55]. ε-PL with less than 9 polym-
erization degrees has no obvious antibacterial activity, 
while high l-lysine polymerization degrees of ε-PL lead 
to an unpleasant bitter taste [55, 89]. Considering that 
the antibacterial activity and taste of ε-PL are consist-
ent with its molecular weight, we studied the influence 
of AdpASn on the ε-PL polymerization degree in S. albu-
lus, and the results of MALDI-TOF–MS showed that S. 
albulus SNA and S. albulus NK660 produced ε-PL with 
the same polymerization degree of 19–33 l-lysine mono-
mers (Fig. 9). This means that AdpASn does not affect the 
polymerization degree of ε-PL in S. albulus, which agrees 
with the conclusion that Pls directly affects the molecular 
weight of ε-PL [76].

Moreover, we identified seven target genes in which 
AdpASn directly regulated their expression in the pri-
mary metabolism pathways (Fig.  10). Because the 
upstream genes encoding phosphate acetyltransferase 
(pta) and acetate kinase (ack) are cotranscribed with 
pyk2, AdpASn directly activates the transcription of pta 

and ack as well. The enzymes phosphate acetyltransferase 
and acetate kinase form the key pathway that is respon-
sible for the interconversion between ADP, acetyl-CoA, 
orthophosphate and ATP, acetate, CoA in many bacteria 
[90, 91]. It was reported that Ack-Pta activity might be 
able to control the cellular concentration of acetyl-CoA, 
which plays a central role in carbon metabolism [90, 92, 
93], and acetyl-phosphate, which acts as a global sig-
nal regulating the functions of proteins involved in bio-
film development, flagella biosynthesis and assembly, 
type-I pilus assembly and colonic acid biosynthesis [94, 
95]. Because the upstream genes encoding transketolase 
(DC74_2409) and transaldolase (tal) are cotranscribed 
with zwf, AdpASn directly represses the transcription of 
the upstream gene encoding transketolase and tal. The 
nonoxidative branch of the pentose phosphate pathway 
in carbohydrate metabolism can provide precursors for 
the synthesis of aromatic amino acids, nucleic acids and 
fatty acids [96]. As important enzymes in the nonoxida-
tive branch of the PPP, transketolase and transaldolase 
catalyze the two- and three-carbon fragment transfer 
from the ketose donor to the aldose acceptor and cre-
ate a reversible link between the PPP and glycolysis [96, 
97]. Consequently, quite interestingly, we identified seven 
target genes of AdpASn, which indicates that the direct 
regulation of AdpASn involves both the oxidative part and 
nonoxidative branch of the pentose phosphate pathway, 
glycolytic pathway, anaplerotic metabolic pathway and 
Ack-Pta pathway of acetate metabolism; thus, AdpASn 
plays an important role in the central metabolism and 
acetate metabolism pathways. Because of the importance 
of AdpASn in the regulation of central metabolism and 
acetate metabolism pathways and the fact that AdpASn 
promotes ε-PL biosynthesis mainly by regulating the 
transcription of the target genes in primary metabolism 
pathways but not the key genes (ask and pls) in the diami-
nopimelic acid pathway and ε-PL assembly, we hope this 
study will provide a reference for enhancing the produc-
tion of ε-PL and other valuable secondary metabolites in 
Streptomyces.

Conclusion
In summary, we characterized the positive regulatory 
effects in ε-PL biosynthesis and diversified regulation of 
the morphological differentiation of Streptomyces AdpA 
homologs and effectively promoted ε-PL biosynthesis 
and morphological differentiation in S. albulus by select-
ing AdpASn from five AdpA homologs to be heterolo-
gously expressed. In addition, we clarified the mechanism 
by which AdpASn affected ε-PL biosynthesis and its effect 
on the ε-PL polymerization degree in S. albulus and indi-
cated that AdpASn promotes ε-PL biosynthesis mainly by 
regulating the transcription of the target genes (zwf, pyk2 
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and pepc) in primary metabolism pathways. Thereafter, 
we revealed the importance of AdpASn in the regulation of 
central metabolism and acetate metabolism pathways by 
the identification of its seven target genes, which provides 
a reference that AdpASn may possess the ability to promote 
the production of other valuable secondary metabolites in 
addition to ε-PL. These findings provide valuable insights 
into the regulatory roles of the Streptomyces AdpA fam-
ily on ε-PL biosynthesis and morphological differentiation 
and supply an efficient strategy to promote the produc-
tion of ε-PL and other valuable secondary metabolites in 
Streptomyces.
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Additional file 1: Figure S1. The upstream and downstream genes of 
different adpA genes and phylogenetic analysis of AdpA homologs. (A) 
Different adpA genes and their upstream and downstream genes in three 
Streptomyces species. The sequence identities between the encoded 
proteins of homologous genes with same color are indicated. (B) Phylo-
genetic analysis of the novel AdpASa, four heterologous AdpA homologs 
AdpASd, AdpA-SH, AdpASn, AdpA-C with NCBI BLASTP hits and well-
studied ones. AdpASa is marked with the red hollow circle, while the four 
heterologous AdpA homologs AdpASd, AdpA-SH, AdpASn, AdpA-C are all 
marked with the blue hollow diamond. Different clades or subclades are 
indicated with different colors, and some bootstrap values of the phyloge-
netic tree are also displayed. Figure S2. Construction of S. albulus NKA and 
effect of AdpASa on specific ɛ-PL formation rate. (A) Schematic method 
for overexpressing adpASa in S. albulus. (B) Confirmation of the integra-
tion of adpASa gene into the genome of S. albulus by PCR. Lane M, DNA 
marker III; Lanes1-6, amplification products using primers SET-F/SET-R with 
gDNA from S. albulus SET, plasmid pSET152 DNA, gDNA from S. albulus 
NKA, plasmid pSET152-adpASa DNA, gDNA from S. albulus NK660 and 
ddH2O as templates, respectively. (C) Transcription levels of adpASa gene 
in S. albulus NK660 and S. albulus NKA by RT-qPCR analysis. ***P < 0.001 
(Student’s t-test). Error bars stand for the SD for three biological replicates. 
(D) Specific formation rates of ɛ-PL in S. albulus NKA and control strains 
(S. albulus SET and S. albulus NK660) cultured in fermentation medium for 
100 h. Error bars stand for the SD for three biological replicates. (E) Pheno-
types of S. albulus NK660 and S. albulus SET grown on MSF agar plates for 
4 days. Figure S3. Construction of S. albulus SDA, S. albulus SHA, S. albulus 
SNA and S. albulus SCA. (A) Schematic method for expressing heterolo-
gous adpA genes in S. albulus. The blue arrow stand for heterologous 
adpA genes (adpASd, adpA-SH, adpASn, adpA-C). (B) Confirmation of the 
construction of mutants expressing heterologous adpA genes by PCR. 
Lane M, DNA marker III; Lanes1, 3, 5, 7, 9, 11, amplification products using 
gDNA from S. albulus SET, S. albulus SDA, S. albulus SHA, S. albulus SNA, S. 
albulus SCA and S. albulus NK660 as templates, respectively; Lanes 2, 4, 6, 
8, 10, 12, amplification products using plasmid pSET152, pSET152-adpASd, 
pSET152-adpA-SH, pSET152-adpASn, pSET152-adpA-C and ddH2O as 
templates, respectively. And all the amplification products use the primers 
SET-F/SET-R. (C) RT-PCR results among S. albulus NK660, S. albulus SET 
and the four heterologous adpA genes expression mutants. Lane M, DNA 
marker III; Lanes D1-D10, amplification products using primers DadpA-F/
DadpA-R with RNA from S. albulus NK660, cDNA from S. albulus NK660, 
RNA from S. albulus SET, cDNA from S. albulus SET, RNA from S. albulus 
SDA, cDNA from S. albulus SDA, gDNA from S. albulus SDA and ddH2O as 
templates, respectively. Lanes H1-H10, Lanes N1-N10 and Lanes C1-C10 
are the amplification products respectively using primers HadpA-F2/
HadpA-R, NadpA-BF/NadpA-BCR and CadpA-F/CadpA-R with the same 
templates and template orders as Lanes D1-D10. Table S1. Primers used 
in this study. Table S2. Accession number and length of the whole candi-
dates used for phylogenetic analysis.
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