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Abstract 

Background:  The rapidly expanding synthetic biology toolbox allows engineers to develop smarter strategies to 
tackle the optimization of complex biosynthetic pathways. In such a strategy, multi-gene pathways are subdivided in 
several modules which are each dynamically controlled to fine-tune their expression in response to a changing cel-
lular environment. To fine-tune separate modules without interference between modules or from the host regulatory 
machinery, a sigma factor (σ) toolbox was developed in previous work for tunable orthogonal gene expression. Here, 
this toolbox is implemented in E. coli to orthogonally express and fine-tune a pathway for the heterologous biosyn-
thesis of the industrially relevant plant metabolite, naringenin. To optimize the production of this pathway, a practical 
workflow is still imperative to balance all steps of the pathway. This is tackled here by the biosensor-driven screening, 
subsequent genotyping of combinatorially engineered libraries and finally the training of three different computer 
models to predict the optimal pathway configuration.

Results:  The efficiency and knowledge gained through this workflow is demonstrated here by improving the 
naringenin production titer by 32% with respect to a random pathway library screen. Our best strain was cultured in 
a batch bioreactor experiment and was able to produce 286 mg/L naringenin from glycerol in approximately 26 h. 
This is the highest reported naringenin production titer in E. coli without the supplementation of pathway precursors 
to the medium or any precursor pathway engineering. In addition, valuable pathway configuration preferences were 
identified in the statistical learning process, such as specific enzyme variant preferences and significant correlations 
between promoter strength at specific steps in the pathway and titer.

Conclusions:  An efficient strategy, powered by orthogonal expression, was applied to successfully optimize a bio-
synthetic pathway for microbial production of flavonoids in E. coli up to high, competitive levels. Within this strategy, 
statistical learning techniques were combined with combinatorial pathway optimization techniques and an in vivo 
high-throughput screening method to efficiently determine the optimal operon configuration of the pathway. This 
“pathway architecture designer” workflow can be applied for the fast and efficient development of new microbial 
cell factories for different types of molecules of interest while also providing additional insights into the underlying 
pathway characteristics.
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Background
Following the advances in metabolic engineering and 
synthetic biology, an increasing interest emerged over 
the past decades in microbial production as a valu-
able alternative for conventional production methods 
of numerous and diverse (bio) chemicals [1–7]. Efforts 
have focused on tackling the bottlenecks in the bio-
synthesis of both native and heterologous products 
to unlock its industrial potential. Synthetic biology 
especially, unlocks the potential to deal with the opti-
mization of complex heterologous pathways through 
the implementation of a synthetic regulatory layer, 
(dynamically) controlling the flux through different 
modules of the pathway. For this purpose, in previous 
work, a regulatory “sigma (σ) factor toolbox” was cre-
ated which enables tunable expression of up to three 
different modules, in an orthogonal (i.e. independent of 
each other, without crosstalk) manner [8]. Orthogonal 
pathway construction holds significant advantages over 
their non-orthogonal counterparts for the creation of 

microbial cell factories producing (heterologous) com-
pounds of interest [9–12].

One such a class of complex (bio) chemicals spark-
ing industrial interest is flavonoids, which are naturally 
produced in plants by an elaborate network of biosyn-
thetic pathways. To date, over 9000 of these specialized 
plant metabolites have been identified, which display 
a wide variety of biological activities with industrial 
application [13, 14]. Centrally positioned in the fla-
vonoid biosynthesis network is the metabolite narin-
genin, which is used as a scaffold molecule for further 
enzymatic processing with numerous chemical decora-
tions and modifications [15]. Its relevance already led 
to many engineering efforts to create an efficient nar-
ingenin producing microbial cell factory (MCF), either 
by focusing on improving precursor molecule supply 
by deleting or knocking down genes of enzymes con-
suming these molecules, overexpression of genes pro-
ducing them, the construction of the heterologous 
pathway using different isozymes and expression levels, 
or a combination of strategies [5, 16–25]. These fac-
tors make naringenin an interesting initial target for 
the construction of an orthogonally expressed pathway 
module, to which additional modules can be connected, 

expanding the genetic network for the custom biosyn-
thesis of various flavonoids.

The optimization of the heterologous biosynthesis 
of flavonoids is in no way straightforward and despite 
these previous engineering efforts, its industrial poten-
tial still remains largely unexploited [3, 16]. To engineer 
MCFs for maximal productivitiy it is required to attune 
every enzymatic reaction in the pathway to each other 
and to the cell’s available resources, thereby avoiding 
flux imbalances leading to accumulation of metabo-
lites and associated toxicity or a potential detrimental 
metabolic burden on the cell [26–28]. At present, the 
advancements in DNA synthesis and numerous existing 
DNA assembly techniques support the possibility of a 
combinatorial engineering approach, which integrates 
a whole set of varying genetic parts in a single assem-
bly, resulting in large libraries of pathway variants [29]. 
Though this approach enables the creation of strains 
with higher productivities, the size of the search space 
grows exponentially with the number of used parts and 
length of the pathway:

(assuming monocistronic operons), rendering it very 
challenging to find the “metabolic sweet spot”. Therefore, 
in the past decade, statistical, and more recently, machine 
learning (ML) methods gradually found their way in 
synthetic biology with respect to biosynthetic pathway 
optimization [30, 31]. These methods include, i.a., pro-
cedures to improve the experimental design, limiting 
the required practical throughput of experiments and 
the creation of stochastic models to allow predictions of 
optimized pathway architecture for rational engineer-
ing. Rather than endlessly screening for the desired strain 
phenotype in the vast genotypic search space, a more 
efficient approach is to acquire a small characterized sub-
set of different pathway architectures with correspond-
ing production titers from which the key determinants 
for pathway performance can be deduced. Computer 
models aid in identifying complex interactions between 
pathway features and their correlation with product syn-
thesis to ultimately predict the potential of new composi-
tions with the used genetic building blocks. This learning 
process can be repeated in multiple Design-Build-Test-
Learn (DBTL) cycles [32] by testing the top predic-
tions and adding these as input to the next cycle, rapidly 

(1)#pathway variants =
(

#promoters ∗ #RBSs ∗ #enzyme variants ∗ #terminators
)#operons in the pathway

Keywords:  Metabolic engineering, Orthogonality, Statistical learning, Escherichia coli, Flavonoid, Transcriptional 
biosensor



Page 3 of 19Van Brempt et al. Microbial Cell Factories           (2022) 21:49 	

converging toward the optimal pathway architecture, and 
thereby decreasing the experimental load.

As shown by Zhou et al. [30], the quality of the (initial) 
data being fed to a model is crucial for the accuracy of 
the predicted pathway performance and thus the over-
all success of the engineering strategy. To collect high-
quality data, rather than characterizing a small randomly 
selected library, a pre-screen is required to select a vari-
ety of producing phenotypes. This implies the need for a 
high-throughput screen to avoid a laborious and time-
consuming selection process. For many molecules, as is 
the case for naringenin, no obvious screen, e.g. colori-
metric measurement, is available. In this respect, small 
molecule-responsive transcriptional biosensors are a very 
valuable tool [33].

In this work, a combinatorial engineering approach 
using the tools for tunable and orthogonal expression, 
created in Bervoets et al. (2018) [8], is combined with a 
biosensor-driven screening to collect high-quality data 
to feed three different predictive models with increas-
ing complexity to optimize microbial naringenin bio-
synthesis (see Fig.  1). As multiple mathematical tools 
offer a solution to metabolic optimization questions, the 
added value of more complex models is assessed with the 
potential trade-offs such as overfitting risks or output 

information content. Subsequently, the performance of 
the best candidate strain is validated on bioreactor scale.

Results
Combinatorial pathway assembly, screening and data 
collection
To create a naringenin producing module in Escheri-
chia coli (E. coli), four non-native catalytic reactions are 
required, starting from two precursor molecules which 
are naturally present in E. coli, i.e., L-tyrosine and mal-
onyl-CoA (see Fig. 1). These four reactions are mediated 
by a tyrosine ammonia-lyase (TAL), a 4-coumaroyl-CoA 
ligase (4CL) a chalcone synthase (CHS) and a chalcone 
isomerase (CHI).

The described module is assembled in a combinato-
rial manner, with variability introduced at the promoter 
and enzymatic levels. The σB-specific promoter library 
from Bervoets et  al. (2018) [8] drives orthogonal gene 
transcription and comprises 10 different promoter vari-
ants with variable transcription initiation frequency 
(TIF) (see Fig.  2). At the enzymatic level, two isozymes 
were selected for each step of the pathway based on their 
reported ability to catalyze the specific reactions in E. coli 
(see Fig.  2 and Table  2). As such, the theoretical search 
space comprises 160.000 (see Eq.  1) possible pathway 
configurations. For the construction, a Golden Gate (GG) 

Fig. 1  Overview of the orthogonally expressed naringenin production module. The pathway is driven by σB-specific promoters and production is 
optimized with a combinatorial engineering approach followed by predictive modeling. (TAL Tyrosine ammonia-lyase, 4CL 4-coumaroyl-CoA ligase, 
CHS Chalcone synthase, CHI Chalcone isomerase, B. subtilis: Bacillus subtilis, σ sigma factor, PB σB-specific promoter from the library of Bervoets et al. 
2018 [8], originating from B. subtilis)
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based assembly procedure is performed as described by 
Coussement et al. (2017) [34]. First, for each enzyme type, 
a carrier plasmid library is created (four in total), con-
taining random promoter–isozyme combinations, with 
each operon surrounded by carrier plasmid-specific link-
ers. These linkers include sequentially matching GG-sites 
to allow the merger of the operon libraries in an expres-
sion vector to be in a predefined order, and with each 
enzyme type only occurring once in a single pathway var-
iant (see Fig. 2). For the construction of the carrier plas-
mid libraries, cross-lapping in  vitro assembly (CLIVA) 
was used [35]. This method, similar to GG, is sequence-
independent and together with the σB-dependency of 
promoter expression, it ensures that the cloning aspect 
of the combinatorial engineering approach does not favor 
integration of specific parts over another and that no bias 
is created as a result of growth speed differences caused 
by overexpression-related metabolic burden. The occur-
rence of specific σB promoter–isozyme combinations in 
the following selection process should therefore solely be 
a result of the naringenin production capacity and not be 
tied to the library preparation.

The assembly mix containing the pathway library was 
then introduced into the E. coli strain harbouring the het-
erologous σB in the genome [8]. This strain also harbored 
pSynSens1.100, the naringenin-responsive biosensor 
plasmid described by De Paepe et al. (2018) [36]. The lat-
ter enables the selection of naringenin-producing strains 
based on an easy-to-measure fluorescent signal, gener-
ated by the biosensor in response to the present narin-
genin concentration (see Fig. 3A). A random selection of 

190 colonies was screened on a microtiter plate (MTP)-
scale and simultaneously the naringenin-responsive bio-
sensor was characterized. The biosensor’s relationship 
between naringenin concentration and fluorescence, and 
its parameterized properties derived from a Hill func-
tion fit, are depicted in Additional file  1: Fig.  S1. The 
acquired fluorescence data from the 190 different strains 
was normalized for optical density (OD600) and sorted 
in descending order. By selecting a subset of strains cov-
ering the whole range of produced fluorescence (as a 
measure for naringenin production) for further charac-
terization, the relevant information content for a fixed 
subset size is maximized (see Fig. 3B). To obtain a quality 
dataset to train the mathematical models while maintain-
ing the practical feasibility of further analysis, the selec-
tion was restricted to 35 strains.

Of the selected strains, the naringenin titer in the MTP-
scale cultures was determined through UPLC analysis 
and ranged from 1.52 to 27.03 mg/L (see Fig. 3B). Addi-
tionally, DNA sequencing was performed to determine 
the corresponding genotypes. Additional file 1: Table S1 
shows for each strain in the subset the specific promoter 
and enzyme variant combinations, the achieved produc-
tion titer and the corresponding fluorescent signal gener-
ated by the biosensor. For one out of the 35 observations, 
sequencing was unsuccessful. The employed biosensor-
driven combinatorial engineering strategy allowed the 
selection of a subset of strains, which indeed exhibits a 

Fig. 2  Schematic representation of the combinatorial construction of the naringenin biosynthesis pathway. For every catalytic step in the pathway, 
libraries are created on carrier plasmids, each library variant being composed of one out of ten different σB-specific promoters and one out of two 
different enzyme variants. All carrier plasmid inserts are subsequently assembled in a predefined order in a single reaction, generating a pathway 
library [34]. (TIF transcription initiation frequeny, σ sigma factor)
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range of production titers resulting from diverse, and 
each unique, pathway architectures.

Building computer models as a tool to enchance 
biosynthesis through a multi‑gene pathway
Data exploration
To optimize the microbial biosynthesis of naringenin, 
the acquired data can be used to train a model that pre-
dicts the optimal pathway configuration based on the 
eight input variables: promoter transcription initiation 
frequency (TIF) of the four enzymatic pathway steps (P_
TAL, P_4CL, P_CHS, P_CHI) and the amino acid cod-
ing sequence variant of those four enzymes (CDS_TAL, 
CDS_4CL, CDS_CHS, CDS_CHI). Preceding the model 
building, the data was explored to expose potential cor-
relation between the predictors and to perform an initial 

identification of key variables that determine pathway 
efficiency.

To render the data fit for analysis, the promoter labels 
(PB1-10) [8] were replaced by their TIF values and a linear-
logarithmic (linlog) transformation was applied to better 
describe the magnitude differences in cellular response 
generated by the different promoters and concordantly 
reduce model prediction errors significantly [37, 38]. The 
linlog transformed data is depicted in Additional file  1: 
Fig. S2.

Correlation between the continuous variables (P_X 
and Titer, with X = TAL, 4CL, CHS, CHI) was tested for 
by determining the Pearson correlation coefficient and 
statistical testing for significance (see Additional file  1: 
Fig. S3). Based on a p-value threshold of 0.05, it cannot 
be stated that there is a linear correlation in the dataset 

Fig. 3  Overview of the naringenin production screening, strain selection and characterization process. A A strain harboring the heterologous sigma 
factor B (σB) from Bacillus subtilis in the genome (inserted in the rpoS operon) [8], was cotransformed with the naringenin biosynthetic pathway 
library and the naringenin-responsive biosensor plasmid (pSynSens1.100) [36]. The strains are screened for naringenin production on microtiter 
plate-scale through their biosensor-generated fluorescence. B 35 strains were selected that are predicted to cover a wide range of naringenin 
production titers. These strains were further characterized individually using UPLC analysis to measure the actual naringenin product titers and 
sequence analysis was used to reveal the incorporated promoters (PB1 to PB10) and coding sequences (CDS) of the isozymes. The characteristics 
of all 35 strains together with the measured fluorescence/OD600 are given in Additional file 1: Table S1. (Rg: Rhodotorula glutinis; Fj: Flavobacterium 
johnsoniae; Pc: Petroselinum crispum; At: Arabidopsis thaliana; Ph: Petunia hybrida; Gh: Gerbera hybrida; Ms: Medicago sativa; TAL: Tyrosine 
ammonia-lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase)



Page 6 of 19Van Brempt et al. Microbial Cell Factories           (2022) 21:49 

between the P_X predictors. Although not significant 
on a significance level of 0.05 when adjusted for multi-
ple testing (Holm-Bonferroni), we can see indications of 
a positive correlation between P_TAL and Titer, between 
P_CHS and Titer and a negative correlation between 
P_4CL and Titer.

To identify key influences of enzyme variant choice on 
the pathway efficiency, for each enzyme type (CDS_X, 
with X = TAL, 4CL, CHS, CHI), barplots were gener-
ated that compare the occurrence frequency of either of 
the two variants in the pathway to the achieved titer (see 
Fig.  4). Similar, also the relationship between promoter 
TIF, here considered a categorical variable, and titer at 
each enzymatic step in the pathway (see Fig.  5A) and 
separately for promoters in combination with either of 
the two enzyme variants (see Fig.  5B) is depicted. One-
way analysis of variance (ANOVA) shows that pathway 
configurations containing the TAL CDS from Flavobac-
terium johnsoniae (FjTAL) perform significantly better 
on average than those containing the TAL CDS from 
Rhodotorula glutinis (RgTAL) (see Fig.  4). The overall 

outperformance of pathway variants incorporating the 
FjTAL CDS over their RgTAL CDS containing counter-
parts is especially visible in Fig. 5B.

What specifically stands out is the presence of only a 
single 4CL CDS from Arabidopsis thaliana (At4CL) and 
three appearances of the CHS CDS from Petunia hybrida 
(PhCHS) in the dataset, out of 34 observations. By using 
a unique linker-based Golden Gate assembly workflow 
for the construction of the pathway variants, the pres-
ence of all promoters and coding sequences is evenly dis-
tributed in the final pathway library [34, 39]. Therefore, 
the underrepresentation of At4CL and PhCHS in the 
selected strains is solely attributed to pathway perfor-
mance. It was decided accordingly to remove the total of 
four entries in the dataset containing either of these two 
enzyme variants to reduce the number of model features, 
and thus model complexity.

Linking pathway features to naringenin production
To establish the relationship between the pathway fea-
tures and the resulting naringenin titer, first an ordinary 
least squares (OLS) regression analysis was performed, 
as this method has already proven successful in solving 
similar biological engineering questions [37, 38, 40, 41]. 
In the initial model, six features (eight analyzed path-
way features, see Fig.  3B, minus CDS_4CL and CDS_
CHS) as well as quadratic and interaction terms were 
included to capture potential non-linear effects that 
influence product biosynthesis efficiency. Interaction 
terms between non-matching promoter TIF and CDS 
features (P_X*CDS_Y) and between isozyme features 
(CDS_X*CDS_Y) were excluded because of their assumed 
biological subordinate relevance. The 30 pathway archi-
tectures remaining after the data exploration were used 
to train the model. This initial model was reduced to only 
maintain the terms contributing to product formation 
by sequentially removing the least significant term from 
the model. The final form and the generated output of 
the linear regression function in R are displayed in Addi-
tional file 1: Fig. S4. An R2 measure of 0.93 was obtained. 
Leave-one-out (LOO) model predictions compared to 
the measured product titers were plotted and addition-
ally the model was used to predict the production capac-
ity of all possible pathway configurations with the used 
genetic parts (see Fig. 6A). The predicted top six narin-
genin producers show a consensus of high FjTAL, Pet-
roselinum crispum 4CL (Pc4CL) and PhCHI expression 
and low Gerbera hybrida CHS (GhCHS) expression to 
reach titers of up to 61.2 mg/L (in the same culture con-
ditions) (see Fig. 6A). This is in contradiction with what 
could be expected from the performed data exploration 
for the preferred expression level of 4CL and CHS. On 
the other hand, the OLS model predicts FjTAL to be the 

Fig. 4  Barplots visualizing the occurrence frequency of either of 
the isozymes in the characterized pathways versus the achieved 
naringenin titer with those pathways. p-values are generated by 
one-way analysis of variance (ANOVA) and indicate a significant 
difference in the average effect of enzyme variant on naringenin 
product titer for p < 0.05. (CDS: coding sequence; NA: not applicable; 
Rg: Rhodotorula glutinis; Fj: Flavobacterium johnsoniae; Pc: Petroselinum 
crispum; At: Arabidopsis thaliana; Ph: Petunia hybrida; Gh: Gerbera 
hybrida; Ms: Medicago sativa; TAL: Tyrosine ammonia-lyase; 4CL: 
4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone 
isomerase)
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Fig. 5  A Barplots visualizing the occurrence frequency of each promoter variant (BX) at each enzymatic step in the characterized pathways (TAL, 
4CL, CHS, CHI) versus the achieved naringenin titer with those pathways containing the specific promoter—enzyme combination. B Identical to A 
but each promoter variant occurence versus the achieved titer is plotted separately for its presence in combination with either of the two isozymes. 
(P_X: promoter TIF of enzymatic step X; CDS_X: enzyme variant; NA: not applicable due to failed CDS DNA sequencing; Rg: Rhodotorula glutinis; 
Fj: Flavobacterium johnsoniae; Pc: Petroselinum crispum; At: Arabidopsis thaliana; Ph: Petunia hybrida; Gh: Gerbera hybrida; Ms: Medicago sativa; TAL: 
Tyrosine ammonia-lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase)
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preferred choice over RgTAL, similarly as observed in the 
data exploration.

As is often the case for predictive modeling for (syn-
thetic) biological engineering, the application’s com-
plexity translates into a large set of predictive features 

while the experimentally obtainable sample size is rela-
tively small and potentially influenced by the inherent 
noise on biological systems. Partial least squares (PLS) 
regression, closely related to principal component anal-
ysis (PCA), is developed to cope with these conditions 

Fig. 6  Computer models predicting the optimal pathway architectures to maximize the naringenin production titer in Escherichia coli. A Ordinary 
least squares (OLS) regression plot comparing Leave-one-out (LOO) model predictions of the training data to the actual measured titer. The final 
model holds an R2 of 0.93 and p = 1.48*10–7 (Additional file 1: Fig. S4). Also the top six predicted producers with pathway architectures and derived 
consensus architecture are given. B Partial least squares (PLS) regression plot comparing LOO model predictions of the training data to the actual 
measured naringenin production titer. The final model [2] latent variables] explains 78.92% (= R2) of the naringenin product titer variance by using 
38.82% of the predictors’ variance. Also the top six predicted producers with pathway architectures and derived consensus architecture are given. 
C Machine-learning workflow developed by Zhou et al. [30] to optimize a biosynthetic pathway, here applied for naringenin biosynthesis. 1000 
iterations of the ANN (artificial neural network) are trained with random initial weights. In each iteration the titers for the complete search space 
are predicted and the ten best producers for iteration i are stored. The frequency (f) of the occurrence of each unique pathway in the Top10 lists of 
all iterations is calculated and a 0.5*fmax threshold is set to select the most promising architectures. (P_X: promoter driving expression of enzyme X; 
CDS_X: enzyme variant of enzyme X; Rg: Rhodotorula glutinis; Fj: Flavobacterium johnsoniae; Pc: Petroselinum crispum; Ph: Petunia hybrida; Gh: Gerbera 
hybrida; Ms: Medicago sativa; TAL: Tyrosine ammonia-lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase; solid red 
square: strain 135, top naringenin producer in library screening)
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and additionally does not require the assumption of 
non-multicollinearity [42]. Consequently, this regres-
sion method (and PCA) already found its use in diverse 
applications such as the engineering of metabolic path-
ways, promoters and RNA devices [43–46]. Therefore, 
in a second approach a PLS regression model was con-
structed including the same predictors as the initial 
OLS model.

The regression model contains 18 regressors and 
was trained with the 30 observations. Based on model 
cross-validation (CV) using 30 LOO segments, 2 latent 
variables (LV) were selected to produce the final model 
(see Additional file  1: Fig.  S5). The model containing 2 
LV results in the lowest prediction error and is able to 
explain 78.92% (R2) of the product titer variance by using 
38.82% of the predictors’ variance. LOO model predic-
tions result in an R2 of 0.5 (see Fig. 6B). The biplot of the 
2 LV’s is depicted in Additional file  1: Fig.  S6. Also, the 
regression coefficients of the final model were calculated, 
indicating the contribution of the predictors to the path-
way performance (see Additional file 1: Fig. S7). Again, a 
major influence of the choice of isozyme for TAL is vis-
ible. The regression coefficients explaining promoter TIF 
all align toward an increased production capacity for 
high expression of TAL, and in sheer contrast with the 
OLS model, high expression of CHS and low expression 
of 4CL and CHI. This is also reflected in the consensus 
of the top six predicted pathway configurations seen in 
Fig.  6B. The PLS model predicts naringenin production 
titers can be achieved of up to 27.43 mg/L naringenin (for 
the used culture conditions). A visual conception of how 
the production space is shaped by the complex predictor 
interactions, is depicted in Additional file 1: Fig. S8. This 
shows a narrowing production landscape for higher pro-
duction titers, demonstrating the requirement of smart 
tools to select the most potent pathways from the gigan-
tic genotypic space.

Recently, Zhou et al. (2018) [30] developed a machine-
learning workflow, especially designed to deal with the 
optimization of heterologous biosynthetic pathways, 
trained with a relatively small dataset generated from a 
prescreened combinatorially engineered library, similar 
to this work. The machine-learning workflow is depicted 
in Fig. 6C. First, the dataset is reorganized to fit the for-
mat accepted by the authors’ custom Matlab script. In 
the input matrix, promoter TIF is accepted as continu-
ous variable (P_X) and every enzyme variant (categorical 
variables) is given its own input neuron (0: not present 
in pathway, 1: present). This matrix is used to train 1000 
iterations of an artificial neural network (ANN) (archi-
tecture: eight input neurons, one hidden layer with two 
neurons and one output neuron, see Fig. 6C), with ran-
dom weights assigned to the neural connections. In each 

iteration, the complete search space is predicted by the 
trained network and the ten best producers (Top10’s) are 
stored. Next, a selection threshold of half the frequency 
of the most occurring pathway architecture in all the 
stored Top10’s (0.5fmax) is set to select a subset of path-
ways with the highest production potential (see Fig. 6C). 
This ANN ensemble workflow (as opposed to the train-
ing of a single model) was adopted to avoid overfitting 
due to the use of a relatively small dataset. In Additional 
file 1: Table S3, also the Top5 and Top1 selection lists are 
given, which are obtained similar to the Top10 list, but 
for this case-study, as opposed to the study by Zhou et al. 
[30], these lists contain no additional new pathway archi-
tectures. The genetic parts predicted to contribute to a 
superior naringenin production are very similar to the 
PLS model predictions with minor differences for TAL 
and CHS promoter TIF (P_TAL and P_CHS, see Fig. 6B 
and C).

Putting the obtained data-driven results to use, it was 
chosen to construct the ANN ensemble-predicted out-
performers (Top10.1–6 strains, see Fig.  6C) and subject 
these to extensive characterization.

In vivo validation of model‑based optimized pathways
To test the accuracy of the in silico predictions of the 
machine learning workflow, six pathways, Top10.x 
(x = 1:6), of which Top10.1, Top10.2 and Top10.4 are 
identical to the PLS model predicted strains PLS1, PLS2 
and PLS3, respectively (see Fig.  6B and C), were con-
structed for in vivo evaluation. As a reference, the three 
strains originating from the biosensor-driven prod-
uct screening holding the highest production titer (see 
Fig. 3B, strain ID: 135, 220 and 133) are rebuilt, lacking 
the additional biosensor plasmid (pSynSens1.100) for this 
purpose. The results are presented in Fig. 7A.

Reference strain 135 produced 27.03  mg/L narin-
genin (n = 1) in the biosensor-driven screening pro-
cess, while the same pathway results in, respectively, 
16.12 ± 1.76  mg/L (n = 5) in this experiment. Inconsist-
encies between both observations could be addressed to 
biological variability or the presence of the naringenin-
responsive biosensor plasmid. Due to this difference, 
the previous observation of strain 135 (see Fig.  3B) is 
labeled as a biological outlier. The strains bearing the 
modeled production pathways, Top10.4 and Top10.5 (see 
Fig.  7A), show a naringenin production titer improve-
ment of respectively 22.5 ± 13.1% and 32.3 ± 12.6% over 
strain 220, the best producing reference strain. The 
measured titers of Top10.4 and Top10.5 are 24.24 ± 1.45 
and 26.18 ± 0.96  mg/L, which are closely in line with 
their PLS regression model predictions of 26.50 and 
24.53  mg/L, respectively, showing the potential of this 
model. Conversely, strains Top10.1, Top10.2 and, to some 
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extent, Top10.3 notably underperform compared to the 
predicted outcome. These results imply that, however 
high expression for TAL and CHS can be beneficial for 
production, pathway architectures including expression 
levels of PB9 or higher for both FjTAL and GhCHS com-
bined are detrimental for pathway performance, point-
ing to metabolic burden, which is also suggested by the 
occurrence of outliers. Comparing the geno- and pheno-
types of Top10.4 with Top10.2 and Top10.5 with Top10.3 
(an increase of promoter TIF for either FjTAL or GhCHS, 
respectively), indicates that the negative effect of meta-
bolic burden is larger for an increase in FjTAL expres-
sion, although the actual protein abundance does not 
necessarily scale equally for different proteins.

Subsequently, the production capacity of the two top 
producers, Top10.4 and Top10.5, expressing optimized 
σB-specific-promoters-driven pathways, were bench-
marked against an E. coli strain bearing an unbalanced 
naringenin biosynthesis pathway (NarRef). The Nar-
Ref pathway is constructed with a combination of CDS 
variants as used by Santos et  al.  (2011, RgTAL, Pc4CL, 
PhCHS and MsCHI) [19] and driven by four identi-
cal σ70 promoters of medium TIF (P22) [48]. Addition-
ally, strains Top10.4 and Top10.5 were also cultured in 
the same conditions with 1.5% glycerol, instead of 0.1% 
glucose, supplemented to the growth medium as car-
bon source because of its reported ability to support the 

metabolic flux toward both precursor molecules tyros-
ine [49] and malonyl-CoA [50], of which the latter is a 
known bottleneck molecule in the flavonoid biosynthesis 
pathway [24, 51]. To differentiate between the effect on 
production from glycerol or from the significantly higher 
carbon source concentration, these strains were also 
grown on a carbon-equimolar amount of glucose sup-
plied to the medium, replacing glycerol. Cultured on the 
basic medium, both optimized strains show, on average, 
an almost 15 times increase in production titer compared 
to NarRef (see Fig. 7B). The supplementation of glycerol 
to the medium increases the titer further by 116.8 ± 5.6% 
to 53.3  mg/L for strain Top10.5 and 111.2 ± 48.9% to 
61.4 mg/L for Top10.4, as compared to production on the 
growth medium containing an equal cmol amount of glu-
cose. Interestingly, while grown on glucose, no significant 
difference in production titer could be detected between 
both these strains, if supplemented with glycerol, Top10.4 
does perform significantly better than Top10.5 (see 
Fig. 7B). This suggests that when the malonyl-CoA sup-
ply increases, the genotype of Top10.4 (P_TAL < P_CHS) 
is used more efficiently as compared to the genotype of 
Top10.5 (P_TAL > P_CHS). Furthermore, when grown on 
the glycerol supplied medium, the p-coumaric acid pool 
is completely drained, while in abscence of glycerol, some 
p-coumaric acid accumulation is observed (see Addi-
tional file 1: Fig. S9). These observations altogether could 

Fig. 7  Production titers of: A Strains 135, 220 and 133, which were selected as the three best naringenin producers in the biosensor-driven 
screening (see Fig. 3B) and the six strains, Top10.x, bearing the nariningenin biosynthesis pathways which were predicted by the articial neural 
network (ANN) ensemble model to be the top candidates to yield optimized naringenin production titers (see Fig. 6C). n = 5 except for Top10.6 
which has n = 1; B The two best performing strains, Top10.4 and Top10.5, compared to a reference strain (NarRef ) expressing a non-optimized 
pathway driven by an identical constitutive sigma factor (σ) 70 promoter for each gene and compared to these strains grown on a culture medium 
that was supplied with glucose (yellow bars with single hatching) or a carbon-equimolar amount of glycerol (yellow bars with cross hatching). (Error 
bars: standard deviation; Outliers (filled red squares) are identified with Grubbs’ test for outliers [47], Statistical tests: ANOVA and Tukey for multiple 
comparison)
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support the theory that the elevated malonyl-CoA supply 
boosts the positive effect of high GhCHS expression and 
at the same time reduces the requirement of the p-cou-
maric acid-accumulation-push-effect, effectuated by the, 
postulated above, heavily burdensome FjTAL.

Bioreactor‑scale in‑depth characterization of the obtained 
optimal naringenin producing microbial cell factory.
The best producing strain, Top10.4 (see Fig. 7), was cul-
tivated in a bioreactor with a working volume of 1.5 L, to 
characterize its growth and production parameters. Sam-
ples were taken throughout the exponential and station-
ary phase to determine the optical density (~ biomass) 
and naringenin, p-coumaric acid and glycerol concentra-
tions. The resulting profiles in function of the time are 
given in Fig. 8, and extended with an overview of process 
parameters in Additional file 1: Fig. S10. Also, the growth 
rate (µ = 0.33/h), yield of product (P) on biomass (X) 
formation (YPX = 62.9  mg P/g CDW) and specific pro-
duction rate (qp = 20.8  mg P/g CDW/h) for naringenin 
production are calculated for the time frame indicated in 
Fig. 8.

When reaching stationary phase, after ± 26 h fermenta-
tion time, a titer of 286 ± 3 mg/L (error is standard devia-
tion on product extraction) naringenin was achieved. In 
the stationary growth phase, no additional naringenin 
production was observed, though p-coumaric acid accu-
mulation started. This could indicate insufficient malo-
nyl-CoA formation, which blocks the pathway upstream 

of p-coumaric acid. However, platings on LB-agar of the 
first fermentation samples showed a yellow coloration 
of the agar, the color of naringenin chalcone, while for 
further platings this effect diminished, and microscopic 
images of these samples showed filamentation of the 
cells, which is a sign of stress [52] (see Additional file 1: 
Fig.  S11). Following these observations, the production 
plasmid of two, non-coloring, single colonies was ana-
lyzed by sequencing, showing different large deletions in 
the pathway genes, which obviously contributes to pro-
duction termination. Another interesting observation 
is the remaining glycerol concentration of ± 6  g/L when 
the stationary phase is reached. This implies that the cells 
suffer from nutrient depletion, other than the carbon 
source, after growth to 5 g/L CDW.

Discussion
Though the progress made in the area of metabolic 
engineering, and especially synthetic biology, unlocks 
an enormous potential to boost the biotechnological 
industry, most MCFs still hit a wall in terms of produc-
tion performance. The rapidly expanding synthetic biol-
ogy toolbox supports the emergence of new engineering 
strategies to breach the current limits of industrial bio-
technology, such as the implementation of an orthogonal 
synthetic regulation network, controlling the metabolic 
flux through different modules of the pathway [8]. Bal-
ancing of the metabolic flux within these orthogonally 

Fig. 8  Batch fermentation with production strain Top10.4. The production profiles for cell dry weight (CDW), naringenin and p-coumaric acid, 
and the substrate usage of glycerol is shown. Also, growth rate (µ), yield (YPX) of product (naringenin, P) on biomass (CDW, X) and the specific 
production rate (qp) for naringenin are given for the time frame indicated between dashed vertical lines, encompassing the production process up 
to the transition to the stationary growth phase. (Error bars = product extraction technical error, n = 2)
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expressed modules is a prerequisite to guarantee the 
optimal functioning of these systems as a whole and 
accordingly, to minimize experimental effort, a general 
applicable workflow for fast and robust pathway opti-
mization is a necessity. In this study, the optimization 
of an orthogonally expressed naringenin-producing 
module was tackled successfully by employing a DNA 
sequence-independent combinatorial assembly method 
in combination with a biosensor-driven product screen-
ing, followed by the application and assessment of three 
different computer models to predict optimal pathway 
architectures. These predictions resulted in the construc-
tion of a strain with a 32.3 ± 12.6% increase in production 
titer as compared to the best producer found in the con-
structed pathway library.

Evaluating the obtained dataset shows that the pathway 
library assembly method described by Coussement et al. 
(2017) [34], complemented in this work with the use of 
CLIVA for the integration of discrete promoter levels, 
shows no exclusion of certain library building blocks in 
the assembly, thereby allowing a broad coverage of the 
defined search space (see Fig.  4 and Fig.  5). Moreover, 
due to the use of DNA sequence independent assembly 
methods, any underrepresentation of certain genetic 
parts among the selected strains would be solely attribut-
able to its biological underperformance for product bio-
synthesis. This potentially allows the rational reduction 
of the model complexity by dropping these feature levels 
(or features), as is the case in this study for At4CL and 
PhCHS (features CDS_4CL and CDS_CHS).

With our dataset it was possible to train an OLS and 
PLS regression model and the ANN ensemble developed 
by Zhou et  al. (2018) [30], thereby obtaining an R2 of 
0.93 and 0.79, respectively, for the OLS regression model 
and the PLS model with two latent variables. Although 
the OLS regression model holds a relatively high R2, its 
predictions are inconsistent with the exploratory data 
analysis and the PLS and ANN ensemble predictions. On 
top of that, the naringenin production titer of strain 135, 
which could, after further characterization, be labeled 
as an outlier in the dataset, is predicted closely to its 
measured value by the OLS regression model, even if 
the observation is not included for model training (see 
LOO cross validation predictions, Fig. 6A). This suggests 
that the OLS model building process (dropping the non-
significant features from the model) is heavily influenced 
by outliers, resulting in the elimination of potentially 
important pathway features in the final model. Indeed, 
when the OLS model building procedure is repeated after 
exclusion of strain 135, the predictions align more closely 
to the PLS and ANN ensemble results (data not shown). 
This surfacing issue is most likely caused by overfitting 
due to the relatively small dataset size, as compared to 

the number of model features. In these conditions, the 
PLS regression model and ANN ensemble showed much 
more robust predictions. Further, by extending the data-
set with the six new observations (Top10.x), and updat-
ing the production titers for strains 135, 220 and 133 
after reanalysis, no new potentially better performing 
strains are identified by either of the two models.

The integrated biosensor-driven modeling approach 
allowed to maximize the pathway performance in a sin-
gle DBTL cycle, and this with a dataset comprising as 
few as 0.02% of all possible pathway architectures with 
the used genetic parts. To achieve this, obtaining a high 
quality dataset is key, and the naringenin-responsive bio-
sensor has proven very valuable in this respect. Although 
the biosensor fails to provide an accurate prediction of 
the achieved naringenin titers in these conditions, it ena-
bled a fast and easy selection of varying, and all produc-
ing, phenotypes. Tuning the biosensor to a more suitable 
operational range with a lower error could improve the 
reliability of fluorescence-to-production titer conver-
sion [36], ideally rendering subsequent UPLC analysis 
unnecessary.

The used pathway optimization approach showed that 
the pathway performance benefits from high TAL (with 
a clear preference for FjTAL) and CHS expression while 
the opposite is true for 4CL and CHI. However, evaluat-
ing the pathway architectures which include the strong-
est promoters to drive both TAL and CHS expression 
indicated that metabolic burden caused a strong decline 
in production titer for these expression levels (Top10.1–3 
versus Top10.4–6), thus defining the optimization limit 
with the present genetic building blocks. In this respect, 
RBS engineering could avert metabolic burden to some 
extent by improving the economy of gene expression (53, 
54). Cell fitness could be enhanced, while still achieving 
the same protein levels, by combining weaker promot-
ers with higher translation initiation rates, and thus, RBS 
strength is an interesting feature to add to the workflow.

Beside pathway balancing, addressing limiting pre-
cursor pools can be equally important. In the flavonoid 
pathway, the low basal level of malonyl-CoA has proven 
a major bottleneck [24, 51]. Consequently, great attention 
has been given to finding metabolic engineering targets 
to increase these levels [24, 55–57]. These efforts show 
that the achieved naringenin production could easily be 
improved by implementing the gene deletions or knock-
downs corresponding to metabolic reactions which con-
sume the required precursor molecules. Additionally, 
specific genes have been identified which contribute to 
an elevated precursor pool when overexpressed. These 
genes are interesting targets for the construction of a 
second expression module for further optimization. In 
the past five years, precursor supplementation and/or 
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precursor pathway engineering have generated unprec-
edented titers for naringenin-producing E. coli microbial 
cell factories. Titers of up to almost 600 mg/L naringenin 
were achieved depending on the specific precursor engi-
neering strategy factories [58–61]. This clearly demon-
strates the potential of complementing this research, 
which specifically optimized the heterologous naringenin 
pathway up to high naringenin titers in E. coli without 
any precursor pool engineering, with such precursor 
engineering strategies.

Also, process and medium optimization is an impor-
tant step in the development of a MCF. We demonstrate 
that, by adding glycerol as the sole carbon source, the flux 
toward malonyl-CoA is sufficiently enhanced to double 
naringenin production up to 61.4 ± 1.1 mg/L (see Fig. 7). 
The influence of medium composition and process condi-
tions are still too often overlooked and postponed to the 
scale-up phase for valorization. Furthermore, comparing 
our two best producers, Top10.4 and Top10.5, grown on 
either the basic medium or the glycerol supplied medium 
shows that different genotypes respond differently to 
changing medium conditions, which adds a major com-
plication to pathway engineering prior to medium opti-
mization. However, the effect of medium and metabolic 
precursor engineering on product biosynthesis is also 
hard to predict if the downstream pathway is not yet 
engineered. Since including process, medium, precursor 
and heterologous pathway optimization simultaneously 
in a single workflow would be very laborious and time-
consuming, the use of genetic circuitry could offer a solu-
tion by enhancing the flexibility of the engineered strain, 
adapting expression profiles according to changing extra- 
and intracellular conditions.

In this study, naringenin production was also scaled 
to 1.5 L in a bioreactor, thereby achieving a production 
titer of 286 ± 3  mg/L (technical error) in 26  h. After 
reaching stationary phase, no increase in production was 
observed. Since the production profile closely aligns with 
growth, a fed-batch fermentation could further enhance 
production titer, although genetic instability issues arise 
after multiple generations, which could hamper the ben-
efits of a prolonged fermentation. It would be interesting 

to further research genetic robustness in order to try to 
alleviate its effects.

Conlusions
In this study, using our developed orthogonal expression 
toolset from previous work [8], a very competitive pro-
duction titer for naringenin is achieved, and this without 
any precursor supplementation or strain engineering for 
precursor pool optimization. More specifically, a high-
throughput combinatorial pathway library screening pro-
cess, to obtain a high quality dataset, was combined with 
predictive modeling by training an OLS, PLS and ANN 
ensemble model. Here, the PLS and ANN ensemble mod-
els clearly outperformed the OLS model. Moreover, the 
ANN ensemble has proven its value as a perfect, easy-
to-implement alternative to more established regres-
sion methods, requires no prior knowledge for a rational 
selection of relevant higher order/interaction terms and 
is designed to deal with (small dataset-related) overfit-
ting issues. The complete workflow could contribute to 
any pathway optimization process for the production of 
various industrially relevant compounds, in case there 
is a high-throughput screening method available. Lastly, 
although the performance of the heterologous narin-
genin biosynthesis pathway was successfully improved, it 
is important not to overlook the potential significance of 
medium and fermentation process conditions differently 
affecting different genotypes.

Materials and methods
Media, strains and plasmid construction
All products were purchased from Sigma-Aldrich 
(Diegem, Belgium) unless otherwise stated. Agarose and 
ethidium bromide were purchased from Thermo Fisher 
Scientific (Erembodegem, Belgium). Standard molecular 
biology procedures were conducted as described by Sam-
brook et al. (1989) [62]. All DNA fragments were ampli-
fied using PrimeSTAR HS DNA polymerase (Takara, 
Westburg, Leusden, The Netherlands) and purified using 
the innuPREP PCRpure Kit (Analytik Jena AG, Jena, 
Germany).

Table 1  Overview of the different plasmid backbnes used in this study and their assigned function

Amp ampicillin, Kan kanamycin, Chlor chloramphenicol

Plasmid Use in study Copy number Antibiotic References

pUC Donor vector pathway assembly  ~ 500–700 Amp [34]

pBR322 Pathway expression vector  ~ 15–20 Kan [34]

pSC101 pSynSens1.00 – naringenin-responsive biosen-
sor

 ~ 5 Chlor [36]
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Lysogeny broth (LB) was used for cloning purposes. 
Complex medium (853) was used for all further experi-
ments, with small modification for the glycerol supplied 
medium. LB medium was composed of 10 g bacto-tryp-
tone, 5  g yeast extract and 5  g NaCl in 1 L water. 853 
medium was composed of 10 g bacto-tryptone, 5 g yeast 
extract, 1  g glucose, 5  g NaCl, 0.7  g K2HPO4 and 0.3  g 
KH2PO4 in 1 L water. For the glycerol supplied medium, 
1 g/L glucose was replaced with 15 g/L glycerol. The rel-
evant antibiotics were added to the media, kanamycin 
(50 µg/mL), chloramphenicol (25 µg/mL) and ampicillin 
(100 µg/mL).

E. coli Top10 cells (Invitrogen, Carlsbad, U.S.A.) were 
used for cloning purposes. The E. coli MG1655 strain 
bearing the heterologous σB in the genome [8] was used 
for all further experiments requiring production pathway 
expression. An overview of the different used plasmid 
backbones and their purpose in this study are listed in 
Table 1. The plasmid carrying the naringenin-responsive 
biosensor, created by De Paepe et al. (2018) [36], and all 
carrier and expression vectors, created by Coussement 
et al. (2017) [34], which were used for pathway (library) 
cloning, were available in the lab.

For the followed pathway construction workflow, all 
enzyme variants in the pathway (listed in Table  2) were 
cloned in separate carrier plasmids, in which all operons 
catalyzing the same enzymatic reaction are flanked by the 
same pair of Golden Gate (GG) restriction sites, sequen-
tially matching with the GG restriction sites for the dif-
ferent steps in the pathway [34] (see Fig.  2). Therefore, 
promoterless CDSs were cloned in the carrier vectors 
using Circular Polymerase Extension Cloning (CPEC) 
after which the promoter (-libraries) were inserted in a 
2-piece CLIVA reaction (35). After the construction of 
the vectors containing libraries, the complete transfor-
mation mixture was incubated in fresh medium for sub-
sequent plasmid extraction. The relevant DNA sequences 

were verified by Sanger sequencing service (Macrogen 
Inc., Amsterdam, The Netherlands).

Subsequently, all pathway (library) fragments were put 
together in the expression vector backbone, in a one-pot, 
5-piece GG reaction. The complete annotated nucleotide 
sequence (genbank format) of the assembled naringenin 
biosynthesis pathway Top10.4 is given in Additional file 1: 
Fig. S12, which is representative for all pathway variants 
only differing in promoter [8] and CDS (see Table 2).

Library screening and characterization
For the fluorescence (FL) based library screening, freshly 
made electrocompetent E. coli MG1655 cells were first 
transformed with pSynSens1.100, after which cells were 
made competent again for electroporation with the GG 
assembly mix containing the pathway variants.

Library screening was performed by randomly pick-
ing single colonies by hand after transformation, and 
incubation in 150 µL 853 medium in sterile 96-well flat-
bottomed black MTPs (Greiner Bio-One, Vilvoorde, Bel-
gium), enclosed by a Breath-Easy® sealing membrane 
(Sigma-Aldrich) for 24 h at 30 °C while shaking (800 rpm 
in a Compact Digital Microplate Shaker, ThermoFisher 
Scientific). The optical density at 600 nm (OD600) and bio-
sensor produced FL was measured (mKate2, excitation: 
588 nm and emission: 633 nm) in a Tecan Infinite M200 
Pro plate reader. The reported values were obtained by 
first correcting FL and OD600 for growth medium (blank) 
and subsequently, calculating the FL over OD600 ratio:

The biosensor was also characterized on its own (E. 
coli MG1655 + pSynSens1.100), simultaneously with the 
screening process and in similar manner, with addition of 
the indicated naringenin concentrations to the medium.

(2)
(

FL

OD600

)

corrected

=
FL− FLblank

OD600 −OD600,blank

Table 2  Used enzymes for the construction of the naringenin biosynthesis pathway (library)

In addition, their organism origin, function, enzyme classification numbers (EC), source and references are given. The DNA sequence of FjTAL, synthesized in this study, 
is given in Additional file 1: Table S2.

Abbrev Organism of origin Function EC Source References

RgTAL Rhodotorula glutinis Tyrosine ammonia-lyase 4.3.1.23 (19) [19, 22, 63–65]

FjTAL Flavobacterium johnsoniae This study [66]

Pc4CL Petroselinum crispum 4-coumaroyl-CoA ligase 6.2.1.12 (19) [19, 22, 63, 67, 68]

At4CL Arabidopsis thaliana iGEM2014:BBa_K1497016 [21]

PhCHS Petunia hybrida Chalcone synthase 2.3.1.74 (19) [19, 22, 63, 67, 68]

GhCHS Gerbera hybrida iGEM2014:BBa_K1497016 [69]

MsCHI Medicago sativa Chalcone isomerase 5.5.1.6 (19) [19, 22, 63, 68]

PhCHI Petunia hybrida iGEM2014:BBa_K1497016 [67, 68]
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To determine the genotype of the 35 fluorescence-
based selected library strains, first, cells from the MTP 
cultures were streaked on agar plates lacking the anti-
biotic required to sustain replication of the biosensor 
carrying plasmid. Next, single colonies were cultured 
for plasmid isolation and subsequent Sanger sequenc-
ing (Macrogen Inc., Amsterdam, The Netherlands). 
Sequence alignment was used to determine the pathway 
architectures.

To prepare the samples for product quantification after 
incubation, 100 µL of the MTP cultures was transferred 
to 1.5 mL tubes and product was extracted with double 
volume of ethyl acetate by vigorous shaking for 3 min at 
1600 rpm in a BioShake iQ (QInstruments) shaker. Sub-
sequently, the organic layer was isolated and evaporated 
to dryness. The remaining products were dissolved in 
ethanol for UPLC-UV analysis.

In vivo model validation
E. coli MG1655 cells were transformed with the plas-
mids containing the pathway architectures from strain 
135, 220, 133 and Top10.1–6, and subsequently cultured, 
analogous as performed for the pathway library strains. 
After incubation, 100 µL of the MTP cultures was trans-
ferred to 1.5  mL tubes, and samples were prepared for 
naringenin quantification, also as described above.

Bioreactor scale production
For in-depth characterization of production strain 
Top10.4, a batch bioreactor experiment was set up using 
a Biostat B + reactor (Sartorius Stedim, Germany) with a 
working volume of 1.5 L glycerol supplied 853 medium. 
Prior to inoculation, the process parameters were set at 
an airflow rate of 1 vvm, 600 rpm stirrer speed, 30 °C and 
pH 7.0. Also 1 drop of antifoam agent (STRUKTOL® J 
673, Schill + Seilacher) was added. The pO2 electrode 
was calibrated with 0% indicating a zero signal and stirrer 
speed was temporary raised to 1000 rpm to set the 100% 
level.

The reactor was inoculated for 1% of the medium vol-
ume with a freshly transformed and exponentially grow-
ing preculture (853 medium). During fermentation, the 
culture temperature was maintained at 30  °C and 5  M 
KOH and 0.5  M H2SO4 solutions were automatically 
added to keep the pH at 7.0. All parameters were moni-
tored and adjusted if necessary with MFCS/win software 
(Sartorius AG).

During the fermentation, samples were taken regularly 
for OD600 and metabolite analysis. The OD600 was meas-
ured with a Jasco V-630Bio spectrophotometer (Easton, 
UK) and 1 mL supernatant and 1 mL broth were stored 
at  − 20 °C for further analysis.

The conversion of OD600 to cell dry weight (CDW) was 
determined by pelleting 20 mL of the final fermentation 
broth, washing with physiological solution, and drying 
the pellets for 24 h at 70° C before weighing. The deter-
mined OD600 to CDW conversion is described as:

Deviating from the sample preparation for prod-
uct quantification of the MTP-scale cultures, ethanol 
extraction was used because of its outperforming prod-
uct recovery efficiency for both p-coumaric acid and 
naringenin, which was revealed after further method 
optimization. An equal volume of ethanol was added 
to the fermentation broth samples and the mixture was 
vigorously shaken for 3  min at 1600  rpm in a BioShake 
iQ (QInstruments) shaker. Cell debris was removed by 
centrifugation and the 50% ethanol mixture was used 
for UPLC-UV analysis. The unprocessed fermenta-
tion broth supernatant was used for HPLC-RI glycerol 
quantification.

Fermentation parameters were calculated as follows, 
and in the time frame indicated in Fig. 8. Growth speed 
(µ) is the slope of the natural logarithm transformed 
growth curve, determined by linear regression, as:

with X the biomass, X0 the initial biomass and t the 
time. The yield (Y) of product (P) on biomass (X) is cal-
culated as:

in the given time frame.
The specific production rate (qp) is calculated as:

Analytic methods
Prior to analysis, all samples were filtered through a 
PTFE filter (VWR, Leuven, Belgium). Naringenin and 
p-coumaric acid were quantified using a Waters Acquity 
UPLC H-Class system connected to an ACQUITY TUV-
detector operating at 30  °C and 290  nm. A Kinetex® 
2.6 µm Polar C18 100 Å column (Phenomenex, Utrecht, 
The Netherlands) was used to separate metabolites using 
the following method, at a flow rate of 0.6 mL/min:

(3)CDW = OD600 ∗ 0.29

(4)X = X0 ∗ e
µ∗t

(5)YPX =
�P

�X
′

(6)qp = µ ∗ YPX
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Time (min) Eluent A: 0.1% 
TFA in water 
(%)

Eluent B: 100% 
acetonitrile (%)

0 90 10

0.5 75 25

5 75 25

7 30 70

8.5 30 70

10 90 10

Glycerol was quantified on a Shimadzu Promi-
nence-I LC2030c Plus system connected to an RID-
20A (Shimadzu) detector operating at 40  °C. A Rezex 
ROA-Organic Acid H + (8%) – 150 × 7,8  mm column 
(Phenomenex, Utrecht, The Netherlands) at 60  °C was 
used to separate metabolites using an isocratic method 
with a flow rate of 0.6  mL/min and 0.005  N H2SO4 in 
water as eluens.

Statistical methods, regression models and machine 
learning
All data processing, statistical testing and modeling was 
performed with a custom written R script except for 
Grubbs’ test for outliers [47], which was implemented 
manually in Microsoft® Office Excel. For all significance 
testing between means, Analysis of Variance (ANOVA) 
was used, followed by Tukey’s honest significance test 
for the comparison of multiple means, if applicable. For 
the data depicted in Fig.  7, all means were included in 
Tukey’s test though only the relevant p-values are shown. 
Error bars depict standard deviation of biological repli-
cates, unless stated otherwise.

The obtained dataset from the biosensor-driven screen-
ing process was preprocessed before any statistical test-
ing or model building. Data for one strain was removed 
due to a missing value and all promoter TIF data was lin-
log transformed according to:

with X the transformed data, Pmin the value of PB1 and 
Pmax the value of PB10 (see depicted in Additional file 1: 
Fig. S2).

Regression models
Ordinary least squares (OLS) regression  Equation  8 
depicts the linear relationship established by the OLS 
regression, where Titeri is the obtained titer in mg/L for 
pathway i, PX,i and CDSX,i are the promoter- and enzyme 
variants of enzyme X for pathway i, β1-18 are the regres-
sion coefficients and εi an error term. For the categorical 

(7)X =
log (P)−

log (Pmax)+log (Pmin)

2
log (Pmax)−log (Pmin)

2

,

pathway features (CDSX), the default 0/1 dummy coding 
is used describing either of two enzyme variants.

where Eq.  8 depicts the initial OLS regression model, 
the same equation leaving out the highlighted terms gives 
the final model. These terms were sequentially removed 
from the model based on their insignificant contribution 
(highest p-value) to the model performance. Lower order 
model terms were not dropped from the model if any 
higher order terms including the feature were still in. The 
model was considered final for an R2 > 0.9 and p-value 
< 0.15 (see Additional file 1: Fig. S4).

Partial least squares (PLS) regression  For PLS regres-
sion, the R pls package was used [70]. The regressors 
from the OLS model, depicted in Eq. 8, were reused for 
PLS regression. The linear relationship shown in Eq.  8 
can be written in its general form as described in Eq. 9, 
with Y representing a matrix containing the production 
titers, X a matrix with the input variables, B the matrix 
with regression coefficients and ε the error matrix. In PLS 
regression, the matrix of predictors X is decomposed into 
orthogonal score matrix T (projection of X) and loadings 
matrix P. Next, Y is not regressed on X but on the first a 
rows of score matrix T, with a the number of latent vari-
ables kept in the model.

For both OLS and PLS, leave-one-out cross validation 
was used, where the model is trained n times, leaving out 
one observation at a time after which the output for the 
left out datapoint is predicted, and this for a total of n 
datapoints.

Machine learning
For pathway optimization through machine learning, 
the workflow and model described by Zhou et al. (2018) 
[30] was adopted. The artificial neural network struc-
ture is composed of 3 layers, an input layer with a neu-
ron for each input pathway variable, a hidden layer with 
two neurons and one output neuron for production titer. 
For this work, all levels of categorical variables (= CDS 

(8)

Titeri = β0 + β1PTAL,i + β2P4CL,i + β3PCHS,i + β4PCHI ,i

+β5CDSTAL,i + β6CDSCHI ,i + β7P
2
TAL,i + β8P

2
4CL,i + β9P

2
CHS,i

+β10P
2
CHI ,i + β11PTAL,iCDSTAL,i + β12PCHI ,iCDSCHI ,i

+β13PTAL,iP4CL,i + β14PTAL,iPCHS,i + β15PTAL,iPCHI ,i

+β16P4CL,iPCHS,i + β17P4CL,iPCHI ,i + β18PCHS,iPCHI ,i + εi

(9)
Y = X B+ ε

X=T P
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variants) were given its own input neuron. The Leven-
berg–Marquardt backpropagation function was used to 
train the network in maximum 100 cycles, at a learning 
rate of 0.01. A log-sigmoid activation function connects 
the neurons of the input layer with the neurons of the 
hidden layer and the connection to the output neuron is 
established via the linear activation function. The train-
ing-prediction procedure was repeated 1000 times. In 
each iteration the ten best predicted producers are stored 
and after the last iteration, for every different strain in 
those lists, the frequency (f) of their occurrence is calcu-
lated. Subsequently, a threshold of 0.5fmax is set to make 
a subselection of the most promising producers. The 
ANN model and selection procedure was performed as 
described by Zhou et al. [30].

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12934-​022-​01775-8.

Additional file 1: Table S1. Pathway architecture of the strains selected 
through the biosensor-driven combinatorial engineering process. The 
naringenin titer determined by UPLC analysis and the biosensor output 
is also given for each strain (n = 1). (TAL: Tyrosine ammonia-lyase; 4CL: 
4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomer-
ase; Nar.: naringenin; Fluo: fluorescence; a.u.: arbitrary units CDS: coding 
DNA sequence; NA: not applicable, failed sequencing). Table S2. NUCLEO-
TIDE SEQUENCE OF THE CODON OPTIMIZED FJTAL, NEWLY SYNTHESIZED 
FOR THIS STUDY. Table S3. output of the artificial neural network (ANN) 
ensemble in the format described by Zhou et al. [30]. Pathway configura-
tions are included in the Top x list if, after 1000 ANN train and predict 
iterations, the frequency of their occurrence in the predicted top x strains 
is higher than half the frequency of the most occurring strain in that top 
list ( f(top x) > 0.5*fmax(top x) ). Identical colors are used to indicate identi-
cal strains. (P_X: promoter variant of enzymatic step X; CDS_X: enzyme 
variant; freq: frequency (f )). Figure. S1 Characteristics of the naringenin-
responsive biosensor (pSynSens1.100 [36]) in the conditions used in this 
study. (A) The responsive curve and fitted Hill function for a supplied 
naringenin concentration range of 0-100 mg/L and the corresponding Hill 
parameters. Also the operational range and Noise parameter are given, as 
determined with the method described by De Paepe et al. (2018) [36] and 
depicted in (B). (a: the basal normalized fluorescent signal (a.u., arbitrary 
units); M: the maximum normalized fluorescent signal (a.u.); n: Hill coef-
ficient (cooperativity); K: Hill constant (transcription factor – ligand affinity, 
mg/L); error bars: standard errors for 5 biological replicates, n = 5). Figure. 
S2 Linlog transformation of the sigma B promoter library promoters as 
input for the created models. (A) Original data, displayed as sfGFP cor-
rected mKate values [8]. (B) Linlog transformed promoters. (C) Used linlog 
transformation and properties of the transformed data. (TIF: transcription 
initiation frequency; P = untransformed promoter TIF, X = linlog trans-
formed promoter TIF). Figure. S3 Correlation (Pearson, ρ) between the 
continuous variables (promoter transcription initiation frequency and titer) 
in the dataset, shown as the generated output of the corr.test() function of 
the R psych package [71]. The top matrix shows the correlation between 
the variables with -1 and 1 indicating a perfect (inverse) correlation and 0, 
no correlation. The bottom matrix shows the corresponding probability 
values (Null hypothesis = ‘H0: 2 variables are not correlated (ρ = 0)’). The 
Holm-Bonferroni method is used to adjust for multiple testing. (Rg: Rho-
dotorula glutinis; Fj: Flavobacterium johnsoniae; Pc: Petroselinum crispum; At: 
Arabidopsis thaliana; Ph: Petunia hybrida; Gh: Gerbera hybrida; Ms: Medicago 
sativa; TAL: Tyrosine ammonia-lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: 
Chalcone synthase; CHI: Chalcone isomerase). Figure. S4 Ordinary least 
squares regression output from the lm() function in R. The input formula 

is obtained by a limitted sequential removal of terms holding the highest 
p-value, starting from the full quadratic regression model. (Q: quadrant; 
P_X: promoter transcription initiation frequency for expression of enzyme 
X; CDS_X: coding sequence variant of enzyme X; P_X:P_X: interaction 
term; I(P_X^2): quadratic term; Rg: Rhodotorula glutinis; Fj: Flavobacterium 
johnsoniae; Pc: Petroselinum crispum; At: Arabidopsis thaliana; Ph: Petunia 
hybrida; Gh: Gerbera hybrida; Ms: Medicago sativa; TAL: Tyrosine ammonia-
lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: 
Chalcone isomerase). Figure. S5 Cross-validated (CV) root mean squared 
error of prediction (RMSEP) curve. A model only including the first two 
components (i.e. latent variables, LV) shows the lowest prediction error. A 
model with two LV predicts 78.92% of the product titer by using 38.82% 
of the predictors’ variance. (adjCV: adjusted CV). Figure. S6 Biplot of the 
first two components of the partial least squares (PLS) regression model. 
(P_X: promoter transcription initiation frequency (TIF) of enzymatic step X; 
CDS_X: enzyme variant; I(P_X^2): quadratic term of promoter transcription 
initiation frequency; ‘P_X:CDS_X’ and ‘P_X: P_Y’: promoter TIF interac-
tion terms with enzyme variants or between the promoter TIFs of two 
different enzymatic pathway reaction steps; TAL: Tyrosine ammonia-lyase; 
4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chalcone 
isomerase). Figure. S7 The estimated partial least squares (PLS) regression 
coefficients of all pathway features, including quadratic and interaction 
terms. (P_X: promoter transcription initiation frequency (TIF) of enzymatic 
step X; CDS_X: enzyme variant; I(P_X^2): quadratic term of promoter TIF; 
‘P_X:CDS_X’ and ‘P_X: P_Y’: promoter TIF interaction terms with enzyme 
variants or between the promoter TIFs of two different enzymatic pathway 
reaction steps; TAL: Tyrosine ammonia-lyase; 4CL: 4-coumaroyl-CoA ligase; 
CHS: Chalcone synthase; CHI: Chalcone isomerase). Figure. S8: Cross 
sections of the multidimensional production landscape, predicted by the 
partial least squares (PLS) model. For each cross section, two pathway 
features (promoter transcription initiation frequencies, TIF) are varied while 
the remaining part of the pathway configuration is fixed. The fixed input 
values, other than the two variables depicted on the x- and y-axes, are set 
according to the predicted optimal producer (see legend, P_X: promoter 
TIF of enzymatic step X; CDS_X: enzyme variant; TAL: Tyrosine ammonia-
lyase; 4CL: 4-coumaroyl-CoA ligase; CHS: Chalcone synthase; CHI: Chal-
cone isomerase). Figure. S9 The UPLC-UV chromatogram of one of the 
ethyl acetate-extracted biological replications of NarRef, Top10.4, Top10.5 
and Top10.4 grown on the glycerol supplied medium. The Top10.5 + glyc-
erol profile is similar to the Top10.4 + glycerol profile and the depicted 
profiles are also representative for the other biological replications, but are 
left out for visual clarity. As a reference, also the chromatographic profile of 
the strain bearing only heterologous sigma factor (σ) B in the genome but 
no plasmid is included. Figure. S10 Batch fermentation with production 
strain Top10.4. In the upper part the production profiles of cell dry weight 
(CDW), naringenin and p-coumaric acid, and the substrate usage of glyc-
erol are given. In the lower part, the process parameter profiles for base 
and acid addition and dissolved oxygen (PO2) are given, together with 
events of process parameter(-change) indications for airflow, stirrer speed, 
temperature and antifoam addition. Stirrer speed spikes were used to 
break accumulated foam. Figure. S11 (A) Plating of the first sample taken 
of the batch fermentation with production strain Top10.4, compared to an 
empty LB-agar plate. The yellow coloration is found to indicate product 
formation, most likely coming from intermediate metabolite naringenin 
chalcone. (B) Gram-stained sample of the performed batch fermentation 
with strain Top10.4. Filamentation of the production organism is an indica-
tion for stress [52]. Figure. S12 Annotated genbank file of the optimized 
naringeninbiosynthesis pathway (pTop10.4, Figure 6). The expression vec-
tor originates from Coussement et al. (2017) [34] (Table 1). The promoters 
driving the pathway are created in Bervoets et al. (2018) [8]. More informa-
tion about the enzymes and source of CDSs can be found in Table S2. The 
used transcription terminators are from the BIOFAB collection [72].
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