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Lovastatin production by an oleaginous 
fungus, Aspergillus terreus KPR12 using sago 
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Abstract 

Background:  Lovastatin is one of the first statins to be extensively used for its cholesterol-lowering ability. It is com-
mercially produced by fermentation. Species belonging to the genus Aspergillus are well-studied fungi that have been 
widely used for lovastatin production. In the present study, we produced lovastatin from sago processing wastewater 
(SWW) under submerged fermentation using oleaginous fungal strains, A. terreus KPR12 and A. caespitosus ASEF14.

Results:  The intra- and extracellular concentrations of lovastatin produced by A. terreus KPR12 and A. caespitosus 
ASEF14 were lactonized. Because A. caespitosus ASEF14 produced a negligible amount of lovastatin, further kinetics 
of lovastatin production in SWW was studied using the KPR12 strain for 9 days. Lovastatin concentrations in the intra- 
and extracellular fractions of the A. terreus KPR12 cultured in a synthetic medium (SM) were 117.93 and 883.28 mg L–1, 
respectively. However, these concentrations in SWW were 142.23 and 429.98 mg L–1, respectively. The yeast growth 
inhibition bioassay confirmed the antifungal property of fungal extracts. A. terreus KPR12 showed a higher inhibition 
zone of 14 mm than the ASEF14 strain. The two-way analysis of variance (ANOVA; p < 0.01) showed significant differ-
ences in the localization pattern, fungal strains, growth medium, and their respective interactions. The lovastatin yield 
coefficient values were 0.153 g g–1 on biomass (YLOV/X) and 0.043 g g–1 on the substrate, starch (YLOV/S). The pollutant 
level of treated SWW exhibited a reduction in total solids (TS, 59%), total dissolved solids (TDS, 68%), biological oxygen 
demand (BOD, 79.5%), chemical oxygen demand (COD, 57.1%), phosphate (88%), cyanide (65.4%), and void of nutri-
ents such as nitrate (100%), and ammonia (100%).

Conclusion:  The starch-rich wastewater serves as a suitable medium for A. terreus KPR12 for the production of lovas-
tatin. It simultaneously decontaminates the sago processing wastewater, enabling its reuse for irrigation/recreation.
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Background
Hypercholesterolemia is a well-studied metabolic disor-
der associated with cardiovascular morbidity and mor-
tality in human adults [1]. Statins are widely used as 
cholesterol-lowering drugs that hinder the activity of the 
critical catalyst, 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase (mevalonate: NADP1 enzyme EC 
1.1.1.34), which is involved in the endogenous biosynthe-
sis of LDL cholesterol [2, 3]. Among statins, lovastatin is 
the first drug approved by the US Food and Drug Admin-
istration (FDA) in 1987 for the treatment of hypercho-
lesterolemia [4]. Lovastatin has been reported to possess 
anticancer properties, immunomodulatory function, 
and anti-inflammatory activity. In addition, it is known 
to play a significant role in preventing neurological dis-
orders and bone problems [5–7]. Lovastatin is a fungal 
secondary metabolite produced through the polyketide 
pathway. Several fungal genera such as Aspergillus, Peni-
cillium, Monascus, Paecilomyces, Trichoderma, Scopu-
lariopsis, Doratomyces, Phoma, Pythium, Gymnoascus, 
Hypomyces, and Pleurotus are known as lovastatin pro-
ducers [8–12]. Of which, Monascus ruber and Aspergillus 
terreus are the foremost and targeted industrial produc-
ers of lovastatin [4, 13].

Lovastatin is produced using different fermentation 
strategies, including surface fermentation, solid-state 

fermentation (SSF), and submerged fermentation (SmF) 
[14, 15]. For large-scale commercial production, SmF is 
used in batch and fed-batch modes [15]. A rich nutrient 
broth could be used for the production of lovastatin in 
the SmF process. Although several agro-wastes are used 
as substrates in the SSF process owing to their low cost, 
eco-safety, long-term availability, and easy downstream 
processing [16], no research has been conducted on the 
use of industrial wastewater.

India is one of the world’s largest producers of cassava, 
which results in a wastewater discharge of about 40,000 
to 50,000 L and 15 to 30 tons of sludge per unit per day to 
produce flour and starch [17, 18]. Sago processing indus-
tries produce two types of wastewaters. The first type is 
released by the washing and peeling of cassava tubers 
and has low chemical oxygen demand (COD). The sec-
ond type is released during the extraction of starch; it has 
a high pollution load due to a high COD and biological 
or biochemical oxygen demand (BOD); contains starch 
up to 7% [19] and low concentrations of cytotoxic com-
pounds or growth inhibitors [20]. The reported  starch 
content of SWW was 4.82 g L−1 [21].

Applications of SWW include biogas [22, 23], hydrogen 
[24, 25], microbial lipid and biodiesel production using 
oleaginous yeast and fungi [21, 26–29]. Several oleagi-
nous fungi and yeasts were isolated previously from this 
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wastewater for biodiesel production with simultane-
ous removal of pollutants [27–31]. Furthermore, certain 
hyper oleaginous fungi such as A. terreus KPR12 and A. 
caespitosus ASEF14 accumulate more than 20% of their 
dry weight lipid [26].

We produced lovastatin with a high therapeutic value 
using these known lovastatin-producing fungal strains 
and low-cost or zero-cost waste stream sago process-
ing wastewater (SWW) and simultaneously performed 
its decontamination. The produced lovastatin in SWW 
was characterized and quantified using ultraviolet (UV) 
spectrometry, Fourier transform infrared (FTIR) spec-
troscopy, and high-performance liquid chromatography 
(HPLC). The lovastatin biogenesis of A. terreus KPR12 in 
SWW was explained through a simple kinetic model.

To the best of our knowledge, this is the first report on 
lovastatin production using SWW. This study indicates 
the prospect of exploiting cheaper, large, and underu-
tilized industrial effluent as a potential resource for the 
production of lovastatin in addition to the sequestration 
of hazardous pollutants present in SWW.

Materials and methods
Fungal strains and culture conditions
A. caespitosus ASEF14 and A. terreus KPR12 were iso-
lated, identified, characterized, and screened for ole-
aginicity, amylase secretion, and cyanide degradation in 
SWW [27, 28, 30]. In addition to biolipid production, 
these two fungal strains were screened for the production 
of co-metabolite, lovastatin in synthetic medium (SM), as 
well as SWW [26]. The GenBank accession numbers of 
these strains are MF599090 and MF599091. The cultures 
were maintained on potato dextrose agar (PDA) slants at 
4 °C.

Physicochemical characterization of SWW
The collection and characterization of SWW used in 
the present work have been reported in our previous 
work [28]. The initial starch concentration of SWW 
was adjusted to 10  g  L−1, and other physicochemi-
cal parameters included pH 4.6, electrical conductiv-
ity (EC) 6.3 dS  m−1, salinity 4.86 g  L–1, total solids (TS) 
4.57  g  L–1, total dissolved solids (TDS) 4.16  g  L−1, 
nitrate 3.10  mg  L−1, ammonia 5.48  mg  L−1, phos-
phate 611.67  mg  L−1, biological oxygen demand (BOD) 
5.04 g L−1, chemical oxygen demand (COD) 70.67 g L−1, 
and cyanide 4.46 mg L−1.

Preparation of seed inoculant
The fungal strains of A. terreus KPR12 and A. caespito-
sus ASEF14 were grown on PDA incubated at 30  °C for 
5 days, and stored under refrigeration at 4 °C. The conidi-
ospores from the above strains were harvested separately 

with sterile solution (0.05% Tween 80 and 0.9% NaCl), 
washed twice with 0.1  M sterile phosphate buffer (pH 
6), and adjusted to contain 107 spores mL–1. An aliquot 
of a spore suspension of each culture (1 mL) was inocu-
lated into 50 mL of potato dextrose broth (pH 6.5) in a 
250 mL Erlenmeyer flask and incubated at 30 °C under a 
static condition for 72 h until the exponential growth was 
reached.

Fermentation conditions and lovastatin production
The two fungal strains grown under SmF conditions 
in SM and SWW were tested for lovastatin produc-
tion. About 100 mL of sterile SM and SWW were taken 
in a 250 mL Erlenmeyer flask, and 10% of prepared liq-
uid seed inoculum of A. caespitosus ASEF14 and A. ter-
reus KPR12 was inoculated separately to the production 
media in the flasks. Before inoculation, the pH of both 
liquid substrates was adjusted to 6.5 using 0.1  N HCl 
or 0.1 N NaOH. The initial starch content of SWW was 
4.82 g L−1 and adjusted to 10 g L−1. The flasks were incu-
bated at 30 °C for 6 days under non-shaking conditions. 
The composition of the SM media (per L) was as follows: 
10 g starch, 0.5 g ammonium sulfate, 7 g potassium dihy-
drogen phosphate, 2.5  g disodium hydrogen phosphate, 
1.5 g magnesium sulfate, 0.15 g ferric chloride, 0.15 g cal-
cium chloride, 0.02 g zinc sulfate, and 0.06 g manganese 
sulfate.

Biomass estimation
After fermentation, fungal mats in SM and SWW were 
separated by filtration through pre-weighed Whatman 
grade 1 filter paper. The biomass obtained by filtration 
was washed twice with distilled water and subjected to 
drying at 50 °C until it reached a constant weight. The dry 
weight of biomass was calculated by gravimetric analysis 
[12].

Extraction of intracellular lovastatin
To measure the intracellular concentrations of statin, the 
dry mycelium (0.5  g) was ruptured by ultrasonication 
for 5 min (PCI Analytics; Mumbai, India). The sonicated 
samples were adjusted to pH 3.0 using 2  NH3PO4 and 
extracted with 10 mL of ethyl acetate in a shaker incuba-
tor at 180 rpm at 30 °C for 2 h. The organic and aqueous 
phases of the filtrates were separated by cold centrifuga-
tion (4  °C) at 6000  rpm for 10  min. The organic phases 
were collected, lactonized with 1% trifluoroacetic acid, 
and concentrated under reduced pressure. The dried resi-
due was dissolved in 1  mL acetonitrile, filtered through 
a 0.45 µm filter, collected in clean brown glass vials, and 
stored at 4  °C for ultraviolet (UV) spectrophotometry, 
Fourier transform infrared (FTIR) spectroscopy, and 
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high-performance liquid chromatography (HPLC) analy-
sis [32].

Extraction of extracellular lovastatin
To measure the extracellular concentrations of lovas-
tatin, the fermentation broths of SM and SWW were 
acidified to pH 3.0 by the addition of 10% 1 N HCl. The 
acidified broths were extracted with an equal volume of 
ethyl acetate under shaking conditions (180 rpm) at 30 °C 
for 2 h. The organic and aqueous phases of filtrates were 
separated by cold centrifugation (4  °C) at 6000  rpm for 
10  min. The organic phases were collected, lactonized, 
concentrated, and analyzed as intracellular lovastatin 
[32].

Analytical methods
UV spectrophotometric method
The filtered fungal extracts were analyzed qualitatively 
for the presence of lovastatin using UV–visible spectro-
photometer (SpectraMax i3x, Sunnyvale, California, US) 
[33]. The radiation source was a deuterium lamp emitting 
a continuous UV spectrum between 210 and 360  nm. 
The lovastatin spectrum was recorded in the absorbance 
mode at 247 nm and 258 nm, respectively. Pure lovasta-
tin (Sigma Aldrich, St. Louis, Missouri, US) was used as a 
standard for comparison.

Fourier transform‑infrared spectroscopy
FTIR measurements of the samples were performed 
using attenuated total reflectance (ATR) equipped with 
a deuterated triglycine sulfate (DTGS) detector (JASCO 
FT/IR-6300, Japan). The crude sample (10  µL) was 
directly placed on the surface of the diamond crystal. 
Samples were scanned using absorbance spectra at wave-
numbers 400 to 4000 cm−1 at a resolution of 1 cm−1 for 
each interferogram.

High‑performance liquid chromatography
The sample extracts were quantitatively analyzed for the 
presence of lovastatin using HPLC device, Shimadzu 
Nexera X2 (Shimadzu, Prominence HPLC, Kyoto, Japan) 
with a UV detector and a C18 column. Acetonitrile and 
water (acidified with 1.1% phosphoric acid) in the ratio 
of 70:30 v/v were used as mobile phase. The eluent flow 
rate and the column temperature were maintained at 
1  mL  min–1 and 40  °C, respectively. The detection was 
performed at 238 nm wavelengths, with an injection vol-
ume of 20 µL. Lovastatin standard was prepared accord-
ing to the manufacturer’s instructions [34]. Lovastatin 
was identified in the sample by comparing the retention 
times with the standards.

Kinetics of lovastatin production in SWW by A. terreus 
KPR12
A 250  mL Erlenmeyer flask containing approximately 
100 mL of SWW was sterilized, inoculated with 10% of 
A. terreus KPR12 inoculum, and incubated at 30 °C. The 
culture broth was harvested from day 1 until day 9 to 
monitor the growth of strains and production of lovas-
tatin. The cell dry weight was determined by gravimetric 
analysis. The amount of lovastatin was determined using 
HPLC as mentioned in the analytical methods section. 
Residual starch in SWW was analyzed using the phe-
nol sulfuric acid method [35]. The following kinetic and 
stoichiometric parameters used to describe the growth of 
strains and production of lovastatin by A. terreus KPR12 
was determined.

The substrate consumption rate (r) is expressed in days.

where Si is the initial concentration and So is the final 
concentration of substrate (s).

The lovastatin yield coefficient (Y) was determined rel-
ative to the production of biomass (X) or the consump-
tion of total substrate (S) in the reaction.

Pmax is the maximum concentration of lovastatin, and 
Pi is the initial concentration of lovastatin in the above 
equation. µmax is the maximum specific growth rate 
obtained from a plot of the specific biomass concentra-
tion versus time.

Bioassay
The yeast growth inhibition bioassay was performed 
using the agar well diffusion method [36]. Candida 
tropicalis ASY2 (Acc no. MH011502) was used as a test 
organism. Cells of the C. tropicalis ASY2 were suspended 
in phosphate-buffered saline and spread onto the yeast 
extract peptone dextrose (YEPD) medium. Wells were 
made using a sterile cork borer of 6  mm diameter. Fur-
ther, 100 µL of intra- and extracellular extract of the fun-
gus KPR12 was loaded into separate wells. Ethyl acetate 
and the standard solution of lovastatin (10 mg dissolved 
in 100 mL of ethyl acetate) (Sigma Aldrich) were used as 
negative and positive controls, respectively. The stand-
ard was prepared according to the method of Friedrich 
et al. [37] with a slight modification, in which the lovas-
tatin was suspended in ethyl acetate followed by sonica-
tion and filtration. All plates were incubated at 30 °C for 
16 to 24 h. A clear inhibition zone around the indicator 

(1)r = (Si−So)/�t,

(2)YLOV/X = (Pmax−Pi)/(Xmax−Xi)

(3)YLOV/S = (Pmax−Pi)/(Si−So)
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organisms was observed, and the diameter of the inhibi-
tion zone is proportional to the concentration of lovasta-
tin in samples.

Characterization of decontaminated SWW
The nutrient and toxicant removal efficiency of A. terreus 
KPR12 in the SWW was studied along with lovastatin 
kinetics. After fermentation, the spent SWW was filtered, 
and the physicochemical parameters were determined 
according to the standard method of water and wastewa-
ter analysis [38]. The cyanide content in SWW was esti-
mated using the modified picric acid method [39].

Statistical analysis
Data were subjected to statistical analysis using the 
Microsoft Excel for Windows 2007 add-ins with XLSTAT 
version 2010.5.05 [40], and all experiments were per-
formed in triplicate. Statistically significant differences 
between the means of groups and their interactions 
were determined using one-way and two-way analysis 
of variance (ANOVA) and Duncan’s multiple range test 
(DMRT) at the 5% significance level.

Geolocation information
The Tamil Nadu Agricultural University’s global position-
ing system (GPS) coordinates are latitude: 11° 07′ 3.36ʺ N 
and longitude: 76° 59′ 39.91ʺ E.

Results and discussion
In the present study, we produced cholesterol-reduc-
ing lovastatin using SWW under SmF using oleaginous 
fungal strains A. caespitosus ASEF14 and A. terreus 
KPR12. Initially, the fermentation was performed for 
6 days. After the extraction of lovastatin from the broth 
of SM and SWW (extracellular) and fungal mycelium 
(intracellular), it was acidified and lactonized with 1% 

trifluoroacetic acid. This process can transform the acid 
form of lovastatin into the lactone form.

Generally, lovastatin exists in both open-ring β-hydroxy 
acid (active) and closed-ring β-lactone forms (inactive) 
(Fig.  1). The physicochemical and pharmaceutical prop-
erties of these two forms are different and interchange-
able [6, 41]. In the broth culture media, the filamentous 
fungi secrete lovastatin mostly in its hydroxy acid form. 
However, the lactone form of industrial lovastatin makes 
it a viable option for subsequent quantification analy-
ses. Therefore, the reduction in pH and lactonization 
converts the acid form to lactone for the quantification 
of lovastatin [13, 41]. In the present investigation, the 
adopted techniques ensured the accurate quantification 
of lovastatin in fermentation broth samples.

Analysis of lovastatin in fungal crude extracts
The lactonized lovastatin extracts from the samples 
were qualitatively analyzed using the UV–visible spec-
trophotometer and compared to the lovastatin absorp-
tion spectrum (Fig.  2A). The lovastatin compound 
had a UV-absorbing peak at 247 nm (Fig. 2A). Such an 
absorption band corresponds to the π–π transition due 
to the conjugated double bonds. As seen in Fig.  2A, 
intra- and extracellular fractions of A. terreus KPR12 
from SM and SWW had the same UV absorption spec-
tra as the lovastatin standard (λmax = 247, 258  nm). 
The UV absorption spectra of intra- and extracellular 
fractions of A. caespitosus ASEF14 (Fig.  2B) revealed 
that the intracellular fraction exhibited an absorp-
tion spectrum similar to that of the lovastatin stand-
ard. In contrast, the extracellular fraction of SM and 
SWW revealed a distinct pattern, such as stationary 
phase lines indicated the presence of non-lovastatin 
compounds. It has been reported three different maxi-
mum absorptions at 232, 238, and 247 nm of pure lov-
astatin, suggesting its better identification from other 

Fig. 1  Closed-ring lactone (inactive) and open-ring hydroxy form (active) of lovastatin produced by filamentous fungi
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compounds, which is due to the presence of dienes [6, 
42]. The spectrophotometric analysis of lovastatin is 
easy, quick, eco-friendly, and less laborious than other 
analytical techniques. Based on these observations, 
the UV absorption spectrum of A. terreus KPR12 con-
firmed the synthesis of lovastatin.

FTIR spectral analysis of lovastatin
The FTIR spectra of fungal extracts were analyzed 
by interferometry using the pure lovastatin standard 
(Fig.  3). All spectra were recorded in the range of 400 
to 4000  cm−1. A narrow band at 3400 to 3500  cm−1 
indicated the presence of non-hydrogen  bonded O–H 
stretches. Vibration often occurs to the left of this peak, 
suggesting the alcoholic/phenolic hydroxyl groups. 
The olefinic C–H stretching vibration band observed 
at 2941.88  cm−1 is a particular characteristic of chi-
tin, a crucial component of the cell wall, and ergosterol 
[43]. The peaks between 2900 and 3000  cm−1 are ali-
phatic and vinylic C–H stretching. Similarly, a band at 
1447.31 cm−1 represented two carbonyl ester groups for 
bending vibrations in methyl and methylene groups. The 
symmetric bending of the C–O–C ester and alkane C–H 
bonds at 1020.16  cm−1 and between 680 and 610  cm−1, 
respectively, corresponds to specific functional peaks 
of lovastatin (Fig.  3). The C–H stretching absorptions 
were observed below 3000  cm−1. Certain band struc-
tures observed between 3150 and 3000  cm−1 represents 
unsaturation (C=C–H) and aromatic rings. The other 
most important bands were aromatic ring vibrations at 
around 1500 to 1600  cm−1, which usually appeared as a 
pair of band structures in the lovastatin [44]. These FTIR 
spectra confirmed the presence of lovastatin in the fungal 
extracts and fractions (Fig. 3).

Quantification of lovastatin
Lovastatin produced by two different fungal strains 
grown in SM and SWW was quantified using HPLC. The 
retention time (5.124) of the first peak for both fungal 
extracts was similar to the standard lovastatin, and the 

A B

λmax = 247nm
λmax = 258nm

Fig. 2  UV spectrophotometric analysis of intra- and extracellular fractions of A. terreus KPR12 (A) and A. caespitosus ASEF14 (B) grown in SM and 
SWW under SmF

Fig. 3  Functional groups corresponding to lovastatin identified 
in intracellular and extracellular fractions of A. terreus KPR12 and A. 
caespitosus ASEF14 in SM and SWW by FTIR spectral analysis and 
compared with the pure lovastatin standard
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appearance of other peaks in the samples might be due 
to the presence of impurities or unidentified compounds 
produced during the fermentation  process (Fig.  4A–C). 
The concentrations of lovastatin in the intra- and extra-
cellular fractions of KPR12 grown in the SM were 117.93 
and 883.28  mg  L−1, respectively; however, in SWW, 
lovastatin yield were 142.23 and 429.98 mg  L−1, respec-
tively (Fig.  5A). Moreover, the lovastatin concentrations 
in intra- and extracellular fractions of ASEF14 grown in 
SM were 7.64 and 2.94 mg L−1, and in SWW, these were 
13.57 and 0.62 mg L−1, respectively (Fig. 5B). The results 
demonstrated that the fungal strain KPR12 was superior 
to ASEF14 in terms of intra- and extracellular fractions, 
irrespective of SM and SWW. Therefore, a further experi-
mental study focused only on the high lovastatin-yielding 
fungus KPR12.

The media conditions and compositions exert varying 
effects on the production of fungal secondary metabolites 
[45]. The synthesis of such secondary metabolites occurs 
at the end of the logarithmic (log) growth phase, in which 
the essential nutrients are in low supply. The secretion of 
accumulated metabolites into the surrounding medium 
is necessary. Fungal strains grown on a synthetic starch-
based substrate medium can secrete a high amount of 

lovastatin as an extracellular fraction. In this study, a 2.04 
fold increase and 1.2 fold decrease was observed in extra-
cellular and intracellular concentrations of lovastatin by 
KPR12 in the SM compared to SWW, respectively. This 
lower secretion could be attributed to the mass transfer 
resistance limits in SWW [46]. In addition, SWW con-
tains hydrogen cyanide (HCN), which is generated dur-
ing milling processes such as peeling, slicing, squeezing, 
and crushing cassava tubers. At high concentrations, 
cyanide becomes toxic to living organisms. Apart from 
its toxic nature, cyanide is well-known for its metabolic 
inhibitory effects [47, 48]. This may also affect the extra-
cellular secretion by fungi. Ultimately, the extraction of 
lovastatin from the intracellular portion of fungal cul-
tures complicates the downstream processing due to 
the presence of structural analogs and intermediates 
[49]. The production of lovastatin is highly influenced by 
slowly metabolized carbon sources (lactose, glycerol, and 
fructose) compared to glucose [8, 50]. The pathway lead-
ing to lovastatin synthesis using carbon is slower than the 
one that uses carbon for biomass production (glucose) 
because lovastatin is a product of secondary metabolism. 
Thus, starch, a slowly metabolized carbon source present 
in SWW and SM, could affect the production of biomass 
and lovastatin.

Although the lovastatin content was lower in SWW 
than in SM; it was selected for kinetic analysis owing to 
its low-cost nature, high availability, economic factors, 
and environmental impact. All data were analyzed using 
a two-way ANOVA, and the results indicated significant 
differences (p < 0.05) in the localization pattern, fungal 
strains, growth media, and their interactions (Table 1).

Kinetics of lovastatin production by A. terreus KPR12 
in SWW
The fermentation cycle was conducted for 9  days. The 
lovastatin content, dry cell weight, residual starch, and 
other physicochemical changes were measured periodi-
cally in SWW (Fig. 6). The results revealed that lovasta-
tin was not detected in the first 2 days of fermentation. 
Lovastatin, a product of secondary metabolism, is pro-
duced at the end of the log or during stationary growth 
phase of fungi. It cannot secrete or synthesize at the early 
growth stage of fungi [15]. The secretion of lovastatin 
in SWW started on the third day of fermentation using 
5.13  g  L−1 starch and produced biomass of 1.82  g  L−1. 
The maximum extracellular concentration of lovastatin 
was 451 mg L−1 with a dry weight of 2.86 g L−1 on the 6th 
day of fermentation.

The lovastatin synthesis pathway consumes carbon 
more slowly than the biomass growth process. The syn-
thesis of building blocks for biomass synthesis is hin-
dered by nitrogen limitation, and the extra carbon is 

Fig. 5  Lovastatin content in intracellular and extracellular fractions 
of A. terreus KPR12 (A) and A. caespitosus ASEF14 (B) grown in SM and 
SWW
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channeled into lovastatin production. Polyketide syn-
thase (PKS: non-aketide synthase [LNKS] + diketide 
synthase [LDKS]), a multifunctional enzyme complex, 
is involved in the biosynthesis of lovastatin [51]. This 
enzyme followed the hyperbolic relationship when the 
substrate concentration was low. In the current investi-
gation, a steep increase in the rate of reaction (lovastatin 
synthesis) with the availability of substrate was observed, 
i.e., starch (Fig.  6). When starch is unavailable, the 
enzyme catalytic site becomes vacant [52]. Thus, the rate 
at which lovastatin synthesis drops dramatically (Fig. 6).

The results showed that the lovastatin yield would 
be enhanced if essential nutrients were present in the 
medium. Such findings were consistent with Hajjaj et al. 
[53] and observed that the relatively low levels of lov-
astatin produced (0.034  mg  g−1  h−1) in cultures grow-
ing at a high specific growth rate (0.070  h−1), whereas 

higher productivity (0.093  mg  g−1  h−1) was achieved at 
lower growth rates (0.052 h−1). Starvation due to a lack of 
essential nutrients (no residual starch content in SWW) 
in this study appeared to block fungal growth and lovas-
tatin production.

The kinetic parameters of A. terreus KPR12 grown in 
SWW are shown in Table  2. The adjusted initial starch 
content used for this kinetic study was 10  g  L−1. The 
final biomass (XFINAL) (on a dry weight basis) obtained 
by the fungi in SWW was 3.20 g L−1. The lovastatin yield 
coefficients on biomass (YLOV/X) and on the substrate 
(YLOV/S) were found to be 0.153 and 0.043 g g−1, respec-
tively. Bizukojc and Ledakowicz [54] documented lovas-
tatin yield coefficients of 0.0065 and 0.0050  g  g−1 by A. 
terreus using lactose and glycerol in the culture, respec-
tively. Lovastatin to biomass yield coefficient was 0.0052, 
and the initial lactose and glycerol contents were 10 and 
5  g  L−1, respectively. The results showed that a higher 
yield of lovastatin was obtained using pure sugar.

In the current study, the biomass to starch yield 
coefficient and the maximum specific lovastatin for-
mation rates (Qmax) in SWW were 0.278  g  g−1 and 
0.0011 g  g−1  h−1, respectively. Pawlak and Bizukojć [55] 

Table 1  Statistical parameters of two-factor ANOVA of lovastatin production as affected by cultivation medium, strains, and 
localization

Growth medium—SM and SWW; Strains—A. terreus KPR12 and A. caespitosus ASEF14; Fraction—Intracellular and extracellular fraction; SS—sum of the squares; DF—
degrees of freedom; MS—Mean sum of the squares; F—F test; Prob F—F probability; Sign.—significant at *p < 0.05; **p < 0.01

Effect SS DF MS F Prob F Sign

Growth medium 45,240.80 1 45,240.80 607.68 7.8354 × 10–9 **

Strains 599,563.59 1 599,563.59 8053.44 2.65301 × 10–13 **

Fraction 268,032.72 1 268,032.72 3600.26 6.61319 × 10–12 **

Growth medium × strains 46,782.23 1 46,782.23 628.39 6.86322 × 10–9 **

Growth medium × fraction 59,010.85 1 59,010.85 792.64 2.73655 × 10–9 **

Strains × fraction 286,637.61 1 286,637.61 3850.17 5.05888 × 10–12 **

Growth medium × strains × fraction 55,069.78 1 55,069.78 739.71 3.59881 × 10–9 **

Residual 595.58 8 74.45

Total 1,360,933.16 15 90,728.88

CV (%) 4.32

Fig. 6  Growth kinetics and lovastatin production by A. terreus KPR12 
in SWW

Table 2  Kinetic parameters of lovastatin production by A. terreus 
KPR12 grown in SWW

Kinetic parameters Values

Lovastatin to biomass yield coefficient (YLOV/X) 0.153 g g−1

Lovastatin to starch yield coefficient (YLOV/S) 0.043 g g−1

Maximum specific formation rate of lovastatin (Qmax) 0.0011 g g−1 h−1

Biomass to starch yield coefficient (YX/S) 0.278 g g−1

Final biomass weight (XFinal) 3.20 g L−1
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reported that biomass to lactose and biomass to glycerol 
yield coefficients by A. terreus were 0.55 g biomass/g lac-
tose and 0.55 g biomass/g glycerol in fed-batch fermenta-
tion with an initial lactose and glycerol concentrations of 
10 and 5 g L−1, respectively. The maximum specific lovas-
tatin formation rate (Qmax) was 0.00178 g g−1 h−1. Based 
on the kinetic results obtained in the present study, 
SWW can be used as the growth substrate for the effec-
tive production of various biomolecules. Moreover, the 
synthesis of secondary molecules depends on strains and 
culture conditions.

The lovastatin yield of A. terreus KPR12 under sub-
merged fermentation in SWW was compared with 
other studies using diverse carbon sources (Table 3). In 
a study, Jaivel and Marimuthu [56] demonstrated that 
glucose was used as a sole carbon source to evaluate the 
ability of 10 fungal strains from various natural sources 
for the production of lovastatin and identified A. ter-
reus (JPM3) as a better producer of lovastatin with a 
yield of 138.4  mg  L−1. In our study, the fungal strain 
A. terreus KPR12 produced nearly 3.3 fold higher yield 
than the previous report [56]. Jia et al. [57] used solu-
ble starch as a source of carbon and reported a 0.8 fold 
increase in the yield compared to the present study. 
Pecyna and Bizukojc [58] analyzed specific lovastatin 
yield during SmF using the lactose-to-glycerol ratio 
and found a lovastatin yield of 161.8 mg L−1. However, 
the current study indicates a 2.7 fold higher lovastatin 
output than the above studies. Sridevi and Charya [59] 
isolated various strains of A. terreus from soil samples 
and screened for the production of lovastatin using the 
agar plug assay method, and the maximum produc-
tion of lovastatin (360  mg  L−1) was obtained using A. 

terreus KSVL-SUCP-75. When compared to this value 
(360 mg L−1), the yield obtained from our research was 
1.25 fold higher. In other studies, strain improvement 
techniques were adopted [60, 61] or supplements were 
added to the culture medium [31, 62] to increase the 
lovastatin titer. The results of the present study demon-
strated that A. terreus KPR12 can be a potential lovas-
tatin-producing strain, which effectively utilizes a waste 
stream to produce therapeutic metabolites.

Yeast growth inhibition bioassay
Aspergillus species have proven to be a prolific source of 
secondary metabolites with interesting biological activi-
ties, including antibacterial activity [63, 64]. Lovastatin 
is known for its antifungal activity; it inhibits the growth 
of several fungal genera, including Saccharomyces cer-
evisiae, Candida spp., Aspergillus spp., and Cryptococ-
cus spp., by inhibiting HMG-CoA reductase that depletes 
ergosterol, the fungal counterpart of cholesterol [65–67]. 
Both ergosterol and cholesterol are important for cell 
viability and membrane fluidity, and they follow a simi-
lar mechanism. The ethyl acetate extract of Aspergillus 
contains several antimicrobial compounds such as hel-
volic acid, monomethylsulochrin, ergosterol, terreic acid, 
butyrolactone, tensyuic acids, emodin, kojic acid, fumiga-
clavine, pseurotin, oleic acid, and n-hexadecanoic acid, in 
addition to lovastatin [68–71].

In the present study, a yeast growth inhibition bioas-
say was performed to verify the antifungal potential of 
intra- and extracellular fractions of A. terreus KPR12 
against Candida tropicalis ASY2. The growth of C. trop-
icalis ASY2 was inhibited in both control and fungal 

Table 3  Lovastatin production by A. terreus KPR12 compared with other reports

A. terreus strain Carbon source Specific supplements/factors Yield (mg L−1) References

ATCC 20542 Lactose, glycerol – 161.8 Bizukojc and Pecyna [80]

JPM3 Glucose – 138.4 Jaivel and Marimuthu [56]

Z15-7 Glycerol Mutant 916.7 Li et al. [61]

LA414 Soluble starch Polyketide antibiotic 952.7 Jia et al. [62]

NRRL 255 Glucose malt extract milk 
powder

Reactor 920 Gupta et al. [81]

GD13 Lactose Cyclic mutagenesis 1242 Kaur et al. [60]

LA414 Soluble starch – 523.9 Jia et al. [57]

MUCL 38669 Lactose, glucose Linoleic acid supplements 212.5 Sorrentino et al. [31]

KPR12 Starch-based SWW – 450.79 (kinetic study) Present study

Monascus strain

 MTCC 369 Glucose – 737 Ahmad et al. [82]

 MTCC 369 Glucose – 351 Sayyad et al. [83]
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extracts, and clearing zones were observed (Fig. 7). The 
diameters of inhibition zones for both intra- and extra-
cellular fractions in SWW were 12 and 14 mm, respec-
tively. The clear zone may be due to the combined 

effects of lovastatin and unidentified antimicrobial 
compounds present in the fungal extracts.

Simultaneous decontamination of SWW
In addition to lovastatin production, SWW can be 
treated and reused in the same industry for tuber wash-
ing or irrigation, or recreation purposes. The compara-
tive evaluation of raw and spent SWW with national 
standards is presented in Table 4. We detected a slight 
increase in pH from 6.5 to 7.1 of the treated SWW, sug-
gesting that alkalinization may be due to the secretion 
of ammonia and its related compounds by the fungus 
during its growth in SWW [72] (Fig. 8). The very high 
EC (6.2 dS m−1) of raw SWW was reduced (4.1 dS m−1) 
after the fermentation due to the soluble salts metabo-
lized by the growth of fungi. The salinity, TS, and TDS 
contents were also reduced in SWW (Table 4). The high 
organic matter content in SWW (COD and BOD) could 
be effectively fermented by oleaginous fungi by oxy-
gen consumption, and the level reduced to 30.27 and 
1.03 g L−1, respectively. Our earlier report by Candida 
tropicalis ASY2 also supported the present investiga-
tion [28]. Almost all nitrogen content in the SWW was 
used as a nitrogen source for fungal growth. A small 
amount of phosphate (72.1 mg L−1) was available in the 
treated SWW. The bound cyanide in the tapioca roots 
was hydrolyzed by linamerase during the starch extrac-
tion process and left free cyanide in the waste stream. 
The microbe can grow and use cyanide-containing 
substrates through anaerobic metabolism, respiratory 
chain metabolism, and their ability to detoxify cyanide 
by splitting the CN radical into carbon and nitrogen 
[73, 74]. In the present study, the cyanide content was 

a

c d

b

Each well (6 mm diameter) loaded with 100 µl of
a - Lovastatin standard (Positive control)
b - Intracellular fraction 
c - Extracellular fraction 
d - Ethyl acetate (Negative control)

Fig. 7  Lovastatin extract of A. terreus KPR12 inhibiting the growth of 
yeast observed by the zone of inhibition around a colony

Table 4  Parametric comparison of raw and spent SWW with national standards

a Adopted from Sujatha and Kumar [74]; Bhaskar and Prasada Rao [84], and Priya et al. [85]

Properties Raw SWW parameters 
estimated in our study

Treated SWW parameters 
estimated in our study

Different parameters of 
SWW reported in other 
studiesa

National effluent standards 
for sago and starch industry

pH 4.67 ± 0.03 8.1 ± 0.02 4.5–5.5 6.5–8.5

EC (dS m−1) 6.3 ± 0.04 4.11 ± 0.0 1.7–3.3 –

Salinity (g L−1) 4.86 ± 0.09 2.15 ± 0.03 – –

Total solids (g L−1) 4.57 ± 0.01 1.86 ± 0.01 0.8–12.45 0.1

Total dissolved solids (g L−1) 4.16 ± 0.02 1.32 ± 0.04 1.5–3.7 –

Starch (g L−1) 10.00 ± 0.07 0.002 ± 0.0 4–7 –

BOD (g L−1) 5.04 ± 0.08 1.03 ± 0.12 6.2–23.1 0.03

COD (g L−1) 70.22 ± 1.1 30.27 ± 1.2 11.08–19.08 0.25

NO3 (mg L−1) 3.10 ± 0.02 ND – 10

NH4 (mg L−1) 5.48 ± 0.05 ND – 50

PO4 (mg L−1) 611.67 ± 0.01 72.1 ± 0.04 – 5

Cyanide (mg L−1) 4.46 ± 0.02 1.54 ± 0.32 3.5–5.3 0.2
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reduced to 1.54  mg  L−1. The results were supported 
by preliminary works of Kandasamy [75], who isolated 
bacterial isolates that could tolerate up to 5  mM cya-
nide. However, further secondary treatment such as 
anaerobic digestion [76, 77] and extended aeration [78, 
79] will further reduce the pollutant content of SWW 
and would pave the way for the reuse of spent SWW for 
various applications.

Conclusion
A. terreus KPR12 produced an optimal titer of 
450.79  mg  L−1 lovastatin in SWW without additional 
nutritional input or strain improvement techniques. 
These findings pave the way for the cost-effective and effi-
cient production of lovastatin by microbial fermentation, 
in which soluble starch in SWW is effectively converted 
into valuable by-products. Such an integrated applica-
tion of A. terreus KPR12, along with the use of industrial 
waste streams, can provide new leads for the develop-
ment of statin as well as effective waste management.
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