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Abstract 

Background:  Genome-scale metabolic model (GSMM) is a powerful tool for the study of cellular metabolic charac-
teristics. With the development of multi-omics measurement techniques in recent years, new methods that integrat-
ing multi-omics data into the GSMM show promising effects on the predicted results. It does not only improve the 
accuracy of phenotype prediction but also enhances the reliability of the model for simulating complex biochemical 
phenomena, which can promote theoretical breakthroughs for specific gene target identification or better under-
standing the cell metabolism on the system level.

Results:  Based on the basic GSMM model iHL1210 of Aspergillus niger, we integrated large-scale enzyme kinetics and 
proteomics data to establish a GSMM based on enzyme constraints, termed a GEM with Enzymatic Constraints using 
Kinetic and Omics data (GECKO). The results show that enzyme constraints effectively improve the model’s pheno-
type prediction ability, and extended the model’s potential to guide target gene identification through predicting 
metabolic phenotype changes of A. niger by simulating gene knockout. In addition, enzyme constraints significantly 
reduced the solution space of the model, i.e., flux variability over 40.10% metabolic reactions were significantly 
reduced. The new model showed also versatility in other aspects, like estimating large-scale kcat values, predicting the 
differential expression of enzymes under different growth conditions.

Conclusions:  This study shows that incorporating enzymes’ abundance information into GSMM is very effective for 
improving model performance with A. niger. Enzyme-constrained model can be used as a powerful tool for predicting 
the metabolic phenotype of A. niger by incorporating proteome data. In the foreseeable future, with the fast devel-
opment of measurement techniques, and more precise and rich proteomics quantitative data being obtained for A. 
niger, the enzyme-constrained GSMM model will show greater application space on the system level.
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Background
Aspergillus niger (A. niger) is widely used in industrial 
fermentation for producing citric acid and glucoamylase 
as it is approved as Generally Regarded As Safe (GRAS) 
[1–4]. In the past two decades, Genome-scale metabolic 
model (GSMM) of A. niger has been proposed and con-
tinuously updated [5–8], and has shown its versatility 
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for simulating physiological properties of A. niger, such 
as exploring the relationship between environmental 
pH and acid production [9], predicting product yield [1, 
10], etc. The GSMM has broadened the study of micro-
bial metabolism characteristics from a small local path-
way to the entire metabolic network in a systematical 
way. However, due to a lack of full understanding of the 
expression regulatory network, GSMM is still far from 
representing all the real cell physiological properties. 
The multi-omics data actually contains more information 
about the physiological characteristics of microbial cells. 
As researchers explore the physiological characteristics 
of A. niger, great progress has been made for proteomics 
study on A. niger [11–13]. Enzymes are the key players 
of metabolic reactions, as they play the catalyzing func-
tion and their expression levels determine the maximum 
flux of individual reaction. Therefore, it is natural to take 
enzyme abundance data as constraints for GSMM, which 
may improve the prediction accuracy of the model. The 
idea implemented on Saccharomyces cerevisiae has been 
proven effective [14].

Initially, enzyme constraints to GSMM were imple-
mented mainly based on transcriptome data, i.e., using 
mRNA level instead of protein level as upper bound for 
corresponding reaction flux [15]. Or implementing con-
straint to the GSMM by restricting the total concentra-
tion of enzymes based on limitation of cytoplasmic space, 
such as FBAwMC [16]. However, simple ON/OFF con-
straints or total enzyme concentration constraints are not 
sufficient to capture the detailed relationship between 
enzyme abundance and the flux of enzyme-catalyzed 
reactions, so kinetics and protein allocation must be 
taken into consideration, like integrative omics-metabolic 
analysis (IOMA) [17]. IOMA is a method that combined 
GSMM with Michaelis–Menten form-like enzyme kinet-
ics to estimate the reaction flux of the central pathway. It 
provided a reference formula to characterize the relation-
ship between reaction flux and enzyme concentration 
from the perspective of kinetics, and it was successfully 
used to predict the metabolic flux for engineered human 
red blood cells with gene knockout. Resource Balance 
Analysis (RBA) [18] took protein allocation into account 
for the construction of GSMM. This method used multi-
ple experimental sets data to estimate the apparent cata-
lytic rate of enzymes, and it applied the estimated value 
as a hard constraint ( |vi| = kEi × Ei ) to predict protein 
allocation. In the simulation of Bacillus subtilis, the allo-
cation of bacterial protein resources was accurately and 
effectively predicted [18]. Recently, the allocation rules of 
the proteome have been further integrated into GSMM 
by dividing the whole cell proteome into four functional 
blocks [19]. This model revealed the relationship between 
proteome and metabolism: the maximum biomass 

specific growth rate may be determined by a large num-
ber of growth-related proteomes and their synthesis cost, 
and the affinity between the enzyme and the substrate 
(Michaelis–Menten constant in reaction kinetics) is 
related to the growth kinetic constant (Monod constant 
in growth kinetics), which depends on cellular metabo-
lism strategy. In addition, more flexible soft constraints 
(inequalities) have also made some progress like GECKO 
[14]. GECKO used enzyme utilization and kcat value to 
expand the stoichiometric matrix S so that the model 
can integrate quantitative proteomics data more directly 
and easily. GECKO has shown good flexibility and more 
accurate prediction ability, which has been confirmed in 
yeast, Bacillus subtilis, and Escherichia coli [14, 20, 21].

In this study, the GECKO [14] was extended to apply 
to the GSMM of A. niger—the enzyme kinetic param-
eters ( kcat ) and protein abundance were correlated with 
the metabolic reaction to achieve the global integration 
of large-scale proteomics data with GSMM, which aimed 
to improve the metabolic prediction accuracy for A. niger 
and to seek for the potential genetic target to improve 
properties of the strain, e.g., high yield, high productiv-
ity, etc. We conducted a comprehensive evaluation of the 
enzyme-constrained GSMM model and confirmed that it 
has better prediction accuracy than traditional GSMM. 
We further prove that the model can simulate phenotype 
variation caused by gene knockout from the perspec-
tive of enzymes. Furthermore, the model can predict the 
requirement of differential expression of proteins under 
different substrate conditions, which allows interpreta-
tion of the metabolic phenotype shifts on the proteomics 
level.

Methods
Integration of enzyme data with GSMM
The A. niger GSMM model iJB1325 [8], including 2320 
reactions, 1818 metabolites, and 1325 genes, was used 
as the basic model. Based on iJB1325, the enzyme-con-
strained GSMM was constructed following the GECKO 
[14] method through integrating the kinetic parameters 
and abundance information of enzymes. The newly estab-
lished model hereinafter was referred to as eciJB1325. It 
integrates 1255 enzymes’ kinetics and abundance into the 
GSMM iJB1325 of A. niger. Both kinetic parameter ( kcat ) 
and the enzyme abundance data are used to restrict the 
reaction flux. As in Eq. 1,

In Eq. 1, vj represents the flux of the jth metabolic reac-
tion, and 

[

Ej
]

 is the concentration of the correspond-
ing enzyme that catalyzes the reaction. The underlying 
rationality of this equation is that the actual reaction rate 

(1)vj ≤ k
j
cat ×

[

Ej
]
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must be less than the maximum reaction rate determined 
by the product of kcat and enzyme concentration.

Based on the above principles, without changing the 
linear structure of iJB1325, we extended the stoichiomet-
ric matrix of the model according to the following steps:

	 i.	 Convert the iJB1325 to an irreversible reaction 
model, and then the total number of reactions was 
increased from 2320 to 3030.

	 ii.	 Treat enzymes as metabolites in reactions, and its 
stoichiometry is the reciprocal of kcat value, for 
example, A + 1/kcat enzyme → B + C. And add an 
exchange reaction for all enzymes respectively.

	iii.	 Introduce 574 pseudo-metabolites for distinguish-
ing isozymes. For instance, A reaction can be cata-
lyzed by two isozymes, A → B, can be rewritten as 
three reactions: A → pseudo-metabolite, pseudo-
metabolite + 1/kcat,1 isozyme1 → B, pseudo-metab-
olite + 1/kcat,2 isozyme2 → B.

	iv.	 Set the upper limit of enzyme-exchange reaction as 
the abundance of enzyme.

Constraints with reversible enzymes (enzymes that cat-
alyze reversible reaction) and multifunctional enzymes 
(enzymes that have ability to catalyze more reactions 
with the same enzyme) are the same as general enzymes, 
it should be noted that for the reversible enzymes, the 
reversible reactions have been splited into two irrevers-
ible reactions, with the same enzyme assigned with two 
different kcat values to represent the different catalyze 
activity for the two reactions respectively; For multifunc-
tional enzymes, specific kcat values were assigned to the 
same enzyme for different reactions. All the above works 
were implemented using both the COBRA [22] and the 
GECKO toolbox [14], and the model was simulated on 
MATLAB R2019b by using Gurobi as the optimization 
solver.

experimental value of total enzyme concentration could 
be integrated with the model using the function addCou-
plingConstraint [22], which could couple all the enzymes 
in the constraint model.

The protein abundance data of A. niger can be obtained 
from the database PAXdb [23]. We retrieved the abun-
dance of 1255 proteins in eciJB1325 with 270 proteins 
having not found any abundance data. To avoid over-
constraint to the model, we selected the constraints for 
protein abundance as follows. We first matched the 
maximum of protein abundance value that reported for 
A. niger, and for proteins with no abundance value for A. 
niger, we searched for the homologous proteins’ abun-
dance of organisms in the order of the same genus, the 
same family, the same order, the same class, and selected 
the maximum value among them as the upper bound of 
the reaction flux. According to the rule, 1255 enzymes 
have been matched and assigned with abundance values 
as model constraints, and the abundance of core pro-
teome in eukaryotes has been proved to be conservative 
[24]. In this work, we sought out constrained upper lim-
its of abundance for a total of 985 enzymes respectively, 
while for the 270 enzymes without abundance matching, 
we removed their constraints on the model.

Acquisition and correction of enzyme kinetic parameters
The kcat values of all 1255 enzymes in eciJB1325, were 
primarily derived from the database BRENDA [25]. How-
ever, some proteins may have more kcat values under dif-
ferent conditions or by different researchers, and some 
may have no kcat published in BRENDA. To tackle this 
issue, we applied the following strategy to determine the 
kcat value for each of the 1255 enzymes of eciJB1325: for 
proteins with any kcat value founded in BRENDA, the 
maximum value is used; or if there is specific activity 
(SA) of the enzyme reported, the kcat,max is determined 
using Eq. (2) The specific activity and the relative molec-
ular weights of the enzymes were from the database Uni-
Prot [26].

Since the kcat values that were automatically matched 
from the database were too small, the kcat values needed 
to be corrected after incorporating the enzyme con-
straints as described above. For the metabolic reactions 
catalyzed by enzymes under the given condition (C), 
there is a proportional relationship between reaction flux 
and enzyme concentration [27] (Eq. 3)

(2)kcat

[

h−1
]= SA[

µmol

mg ∗min
]×MW [

g

mol
]×60[

min

h

]

× 103
[

mg

g

]

× 10−6

[

mol

µmol

]

Here, we do not apply additional constraints on those 
enzymes that no abundance data was available. Because 
the upper bound constraint of total enzyme concentra-
tion measurements as the sum of this portion of the reac-
tion flux is too broad, and we hope to refine the model 
through more specific constraints of protein on reaction. 
Combined with the development of absolute quantitative 
proteomics of A. niger, we can easily introduce new pro-
tein concentration data into eciJB1325. In addition, the 
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The actual catalytic rate of enzyme,kapp , varies with 
condition C.kcat is the maximum catalytic rate of enzyme, 
and η(C) is the condition-dependent efficiency param-
eter. For each metabolic reaction within the cell, some 
conditions allow the enzyme to reach its maximum 
catalytic rate. According to this idea, we simulated the 
reaction flux vj under multiple conditions and obtained 
the corresponding kapp , so that kcat (kcat = kapp,max ) 
was obtained, which can be used to correct the enzyme 
kinetic parameters of the model.

Model network analysis
We used Cytoscape [28] to illustrate the metabolite inter-
connection network. Metabolites are shown as nodes in 
the network. If two metabolites exist in the same reac-
tion, an edge is formed between the two nodes. Enzymes 
and pseudo-metabolites in eciJB1325 were taken as reac-
tants in metabolic reaction equations, so they also served 
as nodes as part of the metabolite network and were dis-
tinguished by different colors. The metabolites present in 
different compartments were also assigned by different 
colors, thus forming an undirected network diagram con-
taining localization information of enzymes, and metab-
olites. The specific meanings of network parameters are 
listed as follows (Table 1).

Simulation details
Flux balance analysis (FBA)
The mathematical analysis of GSMM is usually based on 
flux balance analysis (FBA), i.e., the mathematical represen-
tation of metabolism is based on steady-state mass balance 
equations (Sv = 0) and a linear programming (LP) prob-
lem is solved [29]. eciJB1325 still follows this rule. For the 

(3)kapp,j(C) =
vj(C)

Ej(C)
= kcat,j × η(C)

fermentation culture of A. niger, the corresponding experi-
mental data obtained from the literature [30] was used.

	 i.	 To examine the biomass specific growth rate under 
different growth conditions, we maximized the 
biomass growth rate as the objective, and the con-
straints were the uptake rate of carbon source and 
oxygen, the secretion rate of products and byprod-
ucts, and the production rate of carbon dioxide.

	 ii.	 To examine the secretion rate of the product in the 
chemostat culture, the biomass specific growth rate 
was fixed to the dilution rate under the chemostat 
condition, and maximizing the citric acid produc-
tion rate was taken as the objective. Other meas-
ured reaction rates were added as extra constraints 
to the model.

	iii.	 Similar method was used to examine substrate 
uptake rate in chemostat culture.

	iv.	 The above three FBA calculations were based 
on eciJB1325 and compared with the results of 
iJB1325.

Robustness analysis
Different substrate uptake and oxygen supply rates affect 
the phenotype of cell metabolism, resulting in different 
biomass specific growth rates. We studied the robustness 
of the model predicted biomass specific growth rate by 
varying the glucose and oxygen uptake rates. The imple-
mentation of the robustness analysis was as follows: the 
exchange reaction fluxes of oxygen and glucose were 
both varying in the range of 0–5 mmol/gDW/h with the 
objective was set as maximizing the rate of biomass pro-
duction, and then FBA calculations were performed with 
the results analyzed.

Table 1  The relevant parameters of the network and its specific meaning

Parameters Description

Number of nodes Number of metabolites in metabolic network, n
Number of edges Two nodes participating in the same reaction are connected by edges, en is the number 

of edges connected to node n. The number of edges of the network is the sum of en .

Average number of neighbors Number of neighbors kn is the number of nodes that react with metabolite n

Network diameter The largest distance between two nodes, d
Network radius The minimum among the non-zero eccentricities of the nodes in the network, r
Characteristic path length The expected distance between two connected nodes, l
Clustering coefficient The clustering coefficient Cn of a node n is defined as Cn = 2en/

(

kn

(

kn − 1
))

. The 
network clustering coefficient is the average of the clustering coefficients for all nodes 
in the network

Network density The density of interconnected edges between nodes in the network,mean
(

kn

)

/(n− 1)

Network heterogeneity The tendency of a network to contain hub nodes,
√

variance
(

kn

)

/mean
(

kn

)

Network centralization The concentration of other nodes connected to a node similar to a stellar,max
(

kn

)

/n
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Flux variability analysis (FVA)
The flux distribution calculated by FBA is not unique. 
Since the degree of freedom of the linear metabolic reac-
tion model is much larger than the given constraints. 
Even though linear programming can give a single final 
optimized fluxes results, other fluxes distribution may 
also give the same maximized biomass specific growth 
rate [31]. By the FVA method [29], the maximum and 
minimum values for all reaction fluxes in the model can 
be determined under certain simulated conditions. The 
objective function was to maximize the biomass equation 
with a confidence level of 99.9%. Finally, the flux variabil-
ity (FV) values of reactions were calculated according to 
Eq. (4).

In addition, to measure the effect of integration of 
enzyme constraints on model flux variability, we cal-
culated the variability reduction of each reaction for 
eciJB1325 relative to iJB1325(Eq. 5) and the total reduc-
tion in variability (Eq. 6).

Gene knockout simulation
First, we calculated the biomass specific growth rate 
of the wild-type A. niger model under the experimental 
conditions [30]. Second, single-gene knockout was per-
formed for each of the 1325 genes in the A. niger model, 
and the resulted 1325 mutants were simulated. We sim-
ulate the biomass specific growth rates (µ) of the 1325 
mutants under the same experimental conditions and 
calculated the biomass specific growth rate ratio (grRa-
tio) of the mutant to the wild type by Eq.  (7), which 
is then used to determine whether the corresponding 
knockout gene is necessary, here we take grRatio < 1 as 
the criteria for this.

Differential expression of enzymes under different carbon 
sources
To examine the ability of the proposed model, we com-
pared the differential expression of enzymes for A. niger 
under three different kinds of carbon sources: glucose, 
xylose, or maltose. Expression information of proteins for 

(4)flux variablityj = maxfluxj −minfluxj

(5)

reductionrxnsj =

(

1−
flux variablity

eciJB1325
j

flux variablity
iJB1325
j

)

× 100%

(6)reductionmodel = average
(

reductionrxnsj

)

(7)grRatioi =
µmutant
i

µwild
i

A. niger with xylose and maltose respectively were taken 
from the literature [32, 33]. When xylose was used as the 
only carbon source, expressions of the enzymes related to 
xylose metabolic pathway, arabinose metabolic pathway, 
β-glucose metabolic pathway, aldehyde reductase, and 
thiamine synthetic pathway were up-regulated; While 
when maltose was used as the only carbon source, the 
expression of glucosidase would be increased accord-
ingly. We modeled these variations on eciJB1325.

	 i.	 The flux of glucose exchange reaction of eciJB1325 
was set to 1.0  mmol/gDW/h, and the limitation 
of the oxygen exchange rates was eliminated. The 
optimization object was to maximize biomass 
growth rate, and FBA calculated the flux of 1255 
enzyme-exchange reactions under the above con-
ditions.

	 ii.	 The carbon source condition was changed by lim-
iting the flux of the glucose exchange reaction 
to zero. To ensure the same number of carbon 
moles under the different substrate conditions, 
the flux of the exchange reaction was 1.2  mmol/
gDW/h when xylose was the carbon source and 
0.5 mmol/gDW/h when maltose was the substrate. 
At the same time, the oxygen source limitation was 
removed, and the objective function was to maxi-
mize the biomass. Then, the fluxes of 1255 enzyme-
exchange reactions under the above two conditions 
were calculated by FBA.

	iii.	 ii under two conditions relative to i, the differential 
values in the fluxes of the enzyme-exchange reac-
tions were calculated. The fold changes of enzymes 
when using xylose and maltose relative to that 
when using glucose in eciJB1325 were obtained 
respectively.

Results
Model basic information
Several versions of GSMM model for A. niger have 
been established, which include iHD20 [6], iMA871 [5], 
iHL1210 [7], and iJB1325 [8]. Properties of these mod-
els are compared and shown in Fig.  1A. In this work, 
we used the up-to-date version iJB1325 as the base for 
implementing the enzyme constrained GSMM model, 
called eciJB1325. The new model incorporates 1255 
enzyme constraints in total, and it contains 6274 reac-
tions and 3588 metabolites. The newly added metabo-
lites are the 1255 enzymes and 574 pseudo-metabolites 
introduced for dealing with isozymes (Fig.  1B). Differ-
ent patterns of enzyme-catalyzed reactions were consid-
ered in the model, and different types of enzymes were 
distinguished (See method for details). Among the 1255 



Page 6 of 16Zhou et al. Microb Cell Fact          (2021) 20:125 

enzymes introduced, 574 were isozymes, 82 were com-
ponents of enzyme complexes, and 408 were multifunc-
tional enzymes (Fig. 1C, Table 2).

Kinetic parameters ( kcat value) and molecular weight 
(MW) of the enzyme were derived from the databases 
BRENDA [25] and UniProt [26], respectively. Based on 
the different actions of 1255 enzymes, we matched a total 
of 2488 kcat values under different reaction conditions, 
and these kcat covered 11 orders of magnitude, with a 
median value of 2.05× 10−5 h−1 (Fig. 2A). The molecular 
weight values of 1255 enzymes spanned three orders of 
magnitude with a median of 51.03 kDa (Fig. 2B).

Fig. 1  Comparison among GSMMs of A. niger (A) and classification of metabolites (B) and enzymes (C) in eciJB1325

Table 2  Comparison between iJB1325 and eciJB1325

iJB1325 eciJB1325

Number of reactions 2320 6274

Number of metabolites 1818 3588

Number of compartments 7 7

Number of genes 1325 1325

Additional information about eciJB1325

 Metabolic reactions matched with an enzyme(s) 1663

 Metabolic reactions not matched with an enzyme 1367

 Arm reactions introduced for isozymes 547

 Enzyme usages (treated as reactions) 1255

Fig. 2  Basic information about enzyme proteins used in the model. A Cumulative distribution of kcat values; B cumulative distribution of molecular 
weights; C The abundance information and corresponding molecular weights of 985 proteins collected from 23 eukaryotes
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To provide a maximum constraint on the flux of the 
enzyme participating in the catalysis, we retrieved the 
enzyme abundance data from the database PAXdb 
[23]. Since the quantitative protein information of A. 
niger is scarce, we extended our search to homolog 
proteins in the eukaryote community, and we finally 
obtained approximate abundance information and cor-
responding molecular weight values of 985 proteins, 
derived from 23 eukaryotes (Fig.  2C). Among them, 
331 protein abundance information was taken from A. 
niger itself, accounting for 33.60% of the total number, 
with most of the abundance information was obtained 

from Saccharomyces cerevisiae (45.48%) and part from 
Cryptococcus neoformans (10.66%), which were rela-
tively close to A. niger.

Correction of enzyme kinetic parameters to overcome 
model over‑constraint
Through the integration of enzyme kinetic param-
eters and enzyme abundance information, we built 
the enzyme-constrained model eciJB1325. However, 
we found that the model behaved with a very serious 
over-constraint problem. Some reactions were blocked 
directly when we checked the results. It is found that 

Fig. 3  Over-constraint problem with the enzyme constraint model before and after kinetic parameter correction. Direct integration of kcat values 
from database sources and iJB1325 results in severe over-constraint of the model. A Robustness analysis shows that the model does not show any 
growth with the increase of nutrient uptake rate; B the over-constrain problem was solved by replacing kcat from database with kapp,max obtained 
through thoroughly simulation with vast conditions

Fig. 4  kapp (h−1) values varied with conditions. The abscissa represents the simulated 400 conditions, and the ordinate represents the kapp (h−1) 
value for each simulated condition
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these reactions were constrained with too small kcat val-
ues, which in turn assigned over constraint to the reac-
tion flux resulted in zero growth of the cell (Fig. 3A). To 
tackle this issue, we derived kapp under different condi-
tions [27], the maximum kapp,max among them were used 
to replace original kcat values. The variations of kapp val-
ues with the conditions are shown in Fig.  4. Using this 
method, kcat values was substituted by kapp,max , and the 
over-constraint problem was overcome (Fig. 3B).

Figure 4 shows how does the kapp,max is obtained. We 
simulated 400 conditions through variation of both glu-
cose and oxygen uptake rates, the kapp values of the 
enzymes were calculated using Eq.  3. It can be seen 
that variation of the kapp values cover as most 1 order 
of magnitude, but it reached a constant maximum level. 
Notably, reactions of r384No1, r437No1, and r891No1 
exhibited a relatively stable change trend of kapp values 
with the changes of simulation conditions, and gradually 
reached a maximum value. However, the enzymes kapp 
values corresponding to reactions r12aNo1 and r891No1 
reached the maximum under only a few conditions and 
then decreased with the changes of conditions. This dis-
similarity may be related to the role of isozymes and the 
path selection of the model.

To calculate kapp , it is hard to obtain corresponding 
abundance values of the individual enzyme under the 400 
conditions. Therefore, the abundance values were fixed 
rather than condition-specific in the simulation process, 
and what was actually changing was the magnitude of the 
fluxes for the different reactions under different condi-
tions. So, the result obtained by this method was only a 
rough estimate of kcat value (Table 3). In addition to the 
purpose of modifying the model, we also hope to provide 
some ideas for researchers to dig out the kinetic informa-
tion of enzymes.

Model network analysis to guide important protein 
discovery
The core of GSMM model is the metabolic network. 
Metabolite networks are often used to calculate the con-
nectivity of metabolic networks [34–36]. The node of the 
metabolite network was the metabolite, and two metabo-
lites in the same reaction were connected by an edge. We 
used Cytoscape [28] to map the undirected networks of 
metabolites and calculate the related connectivity indexes 
for both iJB1325 and eciJB1325 (both with and without 
currency metabolite, Fig.  5), respectively. Although the 
pseudo-metabolites reduced the clustering coefficient 
of the network, the addition of other enzymes increased 
the clustering coefficient of the network (Table  4), so it 
could be seen that the clustering coefficient of eciJB1325 
was increased, and the participation of enzymes also 
increased the average node degree, network heterogene-
ity and dispersion of the network, which was caused by 
the increase of nodes.

For the metabolites with a high node degree in the 
network, it means they participate in more reactions 
and often play a more important role in the metabo-
lism. Therefore, we further analyzed metabolite connec-
tivity for both iJB1325 and eciJB1325 by comparing the 
node degrees of metabolites, and we found that currency 
metabolites possess the highest node degree value, which 
means they play vital roles. The node degree of interme-
diate metabolites in fatty acid synthesis and metabolism 
is also large in the network because this process always 
shares the same precursors, e.g., AcCoA. And the con-
nectivity of substances such as glutamic acid/carnitine 
in the metabolite network was larger which are mainly 
involved in protein synthesis and fatty acid metabolism 
(Fig. 6).

As 1255 enzymes in eciJB1325 were considered as 
reactants, we further analyzed the network connectivity 

Table 3  Rough estimates of kcat values and corresponding GPR information

The metabolite with [c] presents metabolites in the cytoplasm and [m] in the mitochondria. GSMM also contains compartment information of some metabolites and 
reactions, which is available in the submitted Additional file 1

Reaction EC number Protein id kcat from 
databases 
(1/h)

Estimated kcat (1/h)

CPAD5P[c] → CO2[c] + H2O[c] + IGP[c] EC:4.1.1.48 A2QRH6 576.00 3549.02

ADP[c] + RTHIO[c] → DADP[c] + H2O[c] + OTHIO[c] EC:1.17.4.1 A2QHU5 9.70 11.81

ADP[c] + RTHIO[c] → DADP[c] + H2O[c] + OTHIO[c] EC:1.17.4.1 A2R480 9.70 12.23

FDP[c] → T3P1[c] + T3P2[c] EC:4.1.2.13 A2QDL0 21,888.00 123,382.29

AMPm[m] + ATPm[m] → 2 ADPm[m] EC:2.7.4.10 A2QPN9 179,998.56 4,211,945.08

0.024 C120ACP[c] + 0.013 C140ACP[c] + 0.012 C141ACP[c] + 0.002 
C150ACP[c] + 0.154 C160ACP[c] + 0.02 C161ACP[c] + 0.008 
C162ACP[c] + 0.002 C170ACP[c] + 0.026 C180ACP[c] + 0.374 
C181ACP[c] + 0.327 C182ACP[c] + 0.032 C183ACP[c] + 0.006 C200ACP[c] 
+ MAGLYP[c] → ACP[c] + DAGLYP[c]

EC:2.3.1.20 A2R157 3312.00 16,234.56
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of enzymes, which helped to dissect the importance of 
different enzymes. We found that enzymes with rela-
tively large connectivity mainly got involved in the fatty 
acid synthesis and metabolism pathways. These path-
ways show high connected reactions and multifunctional 
enzymes (Fig. 7, Table 5).

Enzyme‑constrained integration improves the biomass 
growth rate prediction
One of the main functions of GSMM is to predict 
microbe behaviors. The main purpose of integrating 
more information and constraints into the model is to 
improve the prediction accuracy of the model and ena-
ble the model to simulate a more real cell phenotype [37, 
38]. Comparing the predicted specific biomass growth 
rate, product secretion rate, and substrate absorption 
rate under the condition of chemostat culture with the 

literature values, we can find that through the integra-
tion of enzyme constraints, the prediction accuracy of 
the model has been significantly improved. The pre-
dicted biomass specific growth rate by eciJB1325 was 
0.1486  h−1, consistent with the literature reported value 
under the same condition [30], and the prediction error 
was reduced by 71% compared with that of iJB1325 (with 
results shown in Table  6). Furthermore, the robust-
ness analysis [29, 39] results of iJB1325 showed that the 
growth of A. niger was not limited in the model with the 
increase of carbon source and oxygen source, which was 
not true in reality. However, eciJB1325 simulated a value 
of 0.1805 h−1 for the biomass specific growth rate when 
glucose was utilized, which was slightly greater than 
the literature value for the same strain (approximately 
0.15  h−1) [40]. Therefore, it was acceptable to use this 
value as the restriction of the critical value of biomass 
(Fig. 8).

Improve model ability for mutation simulation
GSMM has great value on guiding target gene identifi-
cation for specific property enhancement of strain, such 
as simulating the change of growth phenotype caused 
by gene knockout [41, 42]. Individual gene knockout of 
the 1325 genes for A. niger was simulated using iJB1325 
and eciJB1325, respectively. The effects of each mutation 
on biomass specific growth rate of A. niger were ana-
lyzed. The results showed that eciJB1325 predicted more 
gene knockouts which can affect cell growth but do not 
block growth than iJB1325. This indicates the new model 
improved accuracy for simulating gene mutation than the 
ordinary model.

Moreover, eciJB1325 can also explain phenotypic 
changes at the protein level with growth-related 

Fig. 5  Visualization of metabolic networks for iJB1325 and eciJB1325 (both with and without currency metabolite)

Table 4  Metabolic network characteristics of iJB1325 and 
eciJB1325

With currency 
metabolites

Without currency 
metabolites

Model ecModel Model ecModel

Number of nodes 1749 3551 1661 3504

Number of edges 20,090 38,258 11,621 24,750

Average number of neighbors 10.046 11.084 6.497 7.849

Network diameter 10 10 15 16

Network radius 5 5 8 8

Characteristic path length 3.27 3.384 4.693 5.115

Clustering coefficient 0.549 0.629 0.354 0.558

Network density 0.006 0.003 0.004 0.002

Network heterogeneity 2.404 2.477 1.753 1.524

Network centralization 0.329 0.259 0.116 0.082
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metabolism caused by gene knockout. Further thor-
oughly investigate the genes identified by eciJB1325, 
which show growth limiting without blocking effects, 
get involved mainly in six pathways (shown in Fig. 9B). 
Among them, the enzymes related to the NADH-
ubiquinone oxidoreduction pathway and standard res-
piratory pathway in the electron transfer chain account 
for the largest proportion. These enzymes are enzyme 
complexes and generally regarded as vital for aerobic 
bacteria, as they supply energy and replenish NADH 
through electron transfer to oxygen for cell growth. 
Knockout of these enzymes coded genes will generally 
cause the death of the cell. However, they showed no 

death effect by the new model, because A. niger has a 
special alternative oxidase pathway [5] that can sup-
plement part of the electron transport work (Fig.  9C). 
Deficiency of the normal respiration-related genes 
causes the decrease of ATP supply, which decreases the 
cell growth rate, however, the recovery of NADH by the 
alternative oxidase plays an important role in keeping 
the cell alive.

Among the identified genes, it also showed that 
isozymes always stand out. If an isozyme is not 
expressed due to the knock-out of related genes, 
other isozymes participated in the catalytic reaction 

Fig. 6  Metabolite connectivity analysis for both iJB1325 and eciJB1325 (with and without currency metabolites, top 20 metabolites at node degree)

Fig. 7  Enzyme connectivity analysis for both iJB1325 and eciJB1325 (with and without currency metabolites, top 20 enzymes at node degree)
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Table 5  Functional matching of 40 proteins with high connectivity

Protein id Function

A2QYP5 Long-chain fatty acid biosynthetic process

A2QTG4 Long-chain fatty acid biosynthetic process

A2QSJ3 Long-chain fatty acid biosynthetic process/secondary metabolic process

A2QYP6 Fatty acid biosynthetic process

A2R285 Long-chain specific acyl-CoA dehydrogenase

A2QR71 Carnitine O-acetyltransferase activity

A2RA53 Cellular lipid metabolic process

A2QUT7 Long-chain fatty acid biosynthetic process

A2R2J8 Fatty acid beta-oxidation

E2PSY4 Carnitine O-acetyltransferase activity

A2R157 Glycerol metabolic process/triacylglycerol biosynthesis

A2QGI0 Fatty acid metabolic process

A2QUJ6 CTP biosynthetic process/GTP biosynthetic process/UTP biosynthetic process

A2QFE2 Long-chain fatty acid biosynthetic process/secondary metabolic process

A2R2S2 3-Oxoacyl-[acyl-carrier-protein] synthase activity

A2R1B0 Acetyl-CoA C-acyltransferase activity

A2QRB1 Acetyl-CoA C-acyltransferase activity

A2QJ40 Fatty acid beta-oxidation

A2QCE8 Acetyl-CoA C-acyltransferase activity

A2QS27 Nucleotide catabolic process

A2QGE2 TRANSMEMBRANE transporter

A2R9U9 Short-chain dehydrogenases/reductases (SDR)

A2R467 Short-chain dehydrogenases/reductases (SDR)

A2R2M6 Short-chain dehydrogenases/reductases (SDR)

A2R1G3 Short-chain dehydrogenases/reductases (SDR)

A2QZJ2 Short-chain dehydrogenases/reductases (SDR)

A2QYS5 Short-chain dehydrogenases/reductases (SDR)

A2QVB0 Short-chain dehydrogenases/reductases (SDR)

A2QLP8 Short-chain dehydrogenases/reductases (SDR)

A2QL00 Short-chain dehydrogenases/reductases (SDR)

A2QAQ8 Short-chain dehydrogenases/reductases (SDR)

A2QGE1 Short-chain dehydrogenases/reductases (SDR)

A2QZ10 Fatty acid metabolic process

A2R9F2 Acyl-CoA dehydrogenase

A2R9F4 Acyl-CoA dehydrogenase

A2QI52 Acyl-CoA dehydrogenase

A2R800 Acyl-CoA dehydrogenase

A2QMT9 Acyl-CoA dehydrogenase

A2QRU8 Aldehyde dehydrogenase (NAD+) activity/glyceraldehyde-3-phosphate dehydrogenase 
(NAD+) (non-phosphorylating) activity

A2Q8K9 ADP biosynthetic process/AMP metabolic process/GTP metabolic process/ITP metabolic process

Table 6  Comparison of specific biomass growth rate predicted values by iJB1325 and eciJB1325

Objective iJB1325 eciJB1325 Literature

Growth rate prediction (h−1) maxµ 0.17 0.1486 0.14 ± 0.01

Substrate absorption rate prediction (mmol/gDW/h) min q(glucose) 1.5470–1.7084 1.5470–1.8681 1.82–1.84

Product secretion rate prediction (mmol/gDW/h) maxq(Citrate) 0.1316–0.3130 0–0.3130 0.02
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to contribute to cell growth. For example, the effect of 
knockout of gene coding one enzyme catalyzing tryp-
tophan synthesis (A2R771), can be released by more 
expression of isozyme gene (An16g02500).

Enzyme‑constrained integration to reduce flux solution 
space
The integration of the enzyme constraints can reduce the 
flux solution space of the model. We performed a flux 
variability analysis (FVA) for all reactions of iJB1325 and 

eciJB1325, respectively, solving for the minimum and 
maximum fluxes achievable by the reactions and their 
flux variability (FV, the difference between the maxi-
mum flux and the minimum flux). For all the reactions 
in iJB1325 and eciJB1325, the median of FV in eciJB1325 
was much smaller than that in iJB1325, and the total 
FV of the model was reduced by 37.24% compared with 
iJB1325, and the distribution of FV also changed signifi-
cantly (p = 4.4441e−201, Wilcoxon signed-rank test). 
From the results of reduction in FV of each reaction of 

Fig. 8  Comparison of robustness results for iJB1325 and eciJB1325. Change in biomass specific growth rate with the increase in glucose and 
oxygen uptake rate in iJB1325 (A) and eciJB1325 (B)

Fig. 9  Single knockout of iJB1325 and eciJB1325 leads to phenotypic changes in growth metabolism. A The changes of biomass specific growth 
rate after single knockout of 1325 genes of iJB1325 and eciJB1325 were listed: grRatio = 0, represented that the biomass specific growth rate after 
gene knockout was zero; grRatio = 1, indicated that gene knockout had no effect on biomass specific growth rate.; 0 < grRatio < 1, represented 
a decrease in biomass specific growth rate after gene knockout. B Functional clustering of enzymes expressed by 35 genes that restrict cell 
growth but do not cause death. C, Mitochondrial electron transport chain of A. niger. The standard respiratory pathway is shown in green, the 
NADH-ubiquinone oxidoreduction pathway in yellow, and the alternative oxidase pathway in blue
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eciJB1325 versus iJB1325, the FV of 1215 reactions was 
reduced (40.10%) and that of 1100 reactions was reduced 
by more than 75%, accounting for 36.30% of the total 
number of reactions (Fig. 10B). In summary, the integra-
tion of enzyme constraints and GSMM effectively lim-
ited the flux solution space of the model and significantly 
reduced the variability of the model.

Differential expression of enzymes under different carbon 
sources
Different carbon sources will affect the composition of 
secreted proteins of A. niger [43]. However, secreted 
enzymes with different functions will show differential 
expression for A. niger cultured under different carbon 
sources. Integration of enzyme abundance constraints 
enables the GSMM ability to simulate this. According to 
the literature [32, 33], A. niger can alter its secreted pro-
tein composition when transferred from xylose to malt-
ose condition. For example, when A. niger used xylose 
as the carbon source, the expression levels of xylose 
metabolic pathway-related enzymes, arabinose-related 
enzymes, β-glucose metabolism-related enzymes, alde-
hyde reductase, and thiamine synthesis pathway-related 
enzymes were up-regulated, and eciJB1325 showed good 
performance for predicting these up-regulated proteins.

Among these up-regulated proteins, A2QMS4, 
A2Q8B5, A2QG25, A2QVE5, and A2QB6 are involved 
in the xylose metabolism pathway, and A2QB7, A2R6Z2, 
A2Q8B5, and A2QG25 are enzymes related to arabinose-
related enzyme synthesis and metabolism (Fig.  11A). It 
could be seen from the metabolic pathway diagram of A. 
niger that the xylose metabolic pathway was directly con-
nected with the arabinose metabolic pathway, and they 

participated in the pentose metabolic pathway of A. niger, 
leading to the further conversion to D-Ribulose involv-
ing in pentose phosphate pathway (PPP). Therefore, up-
regulation of enzymes related to arabinose synthesis and 
metabolism could be observed from the model, as well 
as significant up-regulation of enzymes related to ribose 
metabolism (A2QBD7, A2R6C9, A2R9S3, A2R2B5, 
A2QW91, A2QTW0, A2QCB3) (Fig.  11B). Besides, 
β-glucose metabolism-related enzymes (A2R808), alde-
hyde reductase (A2QBD7, A2QV34, A2Q8B5, A2QVE5, 
A2R704), and thiamine synthesis pathway-related 
enzymes (A2QDB0, A5AA75, A2QRM6) were overex-
pressed, which was consistent with published data [32, 
33].

We also simulated the condition with maltose as a car-
bon source using eciJB1325. It has been reported that 
glycosidase is overproduced when A. niger utilizes malt-
ose [33]. Model predictions showed a significant up-reg-
ulation of Alpha-glucuronidase (aglA/aglU) (Fig.  11A). 
However, the model failed to simulate the up-regulation 
of glucose oxidase, superoxide dismutase, and peroxi-
dase reported in [32], which was since the model had too 
many alternative pathways and lacked kinetic constraints.

Discussion
Based on the method of GECKO [14], we integrated 
1255 enzymes with the genome-scale metabolic model 
of A. niger iJB1325. Unlike small-scale integration that 
only adds enzyme constraints to several specific reac-
tions [20], eciJB1325 integrates large-scale protein data 
as constraints, and 1255 enzymes are included covering 
central carbon metabolism, fatty acid synthesis, amino 

Fig. 10  Comparison of flux variability between iJB1325 and eciJB1325. A Cumulative distribution of flux variability; B Flux variability reduction 
distribution of eciJB1325 versus iJB1325 reaction
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acid metabolism, and secondary metabolism. In addition, 
the integration of enzyme constraints does not change 
the linear structure of the model, but it greatly reduces 
the available solution space. Comparative analysis of the 
flux variability between iJB1325 and eciJB1325 reveals 
that the introduction of enzyme constraints significantly 
reduced the flux variability.

The integration of enzyme constraints improves the 
model’s ability to predict metabolic phenotypes. Com-
pared with the original iJB1325, eciJB1325 showed higher 
accuracy in phenotype prediction, which was shown by 
closer prediction with cell growth rate, substrate uptake 
rate, and product secretion rate compared to the experi-
ment results. Especially, robustness analysis showed that 
the original model predicted an unbounded cell growth 
rate with excess unlimited nutrients concentration, while 
the enzyme constraints corrected this. The eciJB1325 
gave an upper bound of the cell biomass specific growth 
rate, 0.181 h−1, which is slightly larger than the reported 
0.15  h−1 [40]. In addition, enzyme constraints enhanced 
the model’s ability to predict potential gene targets for 
metabolic engineering, e.g., eciJB1325 can identify more 
growth-related genes through gene knockout simula-
tion, and it can interpret the phenotypic changes caused 
by gene knockout at the enzyme level. In the new model, 
alternative isozymes can be activated when one of the 
isozymes was knock out, e.g., when one enzyme that gets 
involved in tryptophan synthesis, An16g02500 was knock 
out, its isozyme, A2R771, takes the responsibility to carry 
out the corresponding reaction flux to supplement the 

lacking gene without any harmless to the cell growth. 
And this cannot be implemented in the original model.

The proposed eciJB1325 model has more practical 
application values. For example, with quantitative prot-
eomics data, flux upbound of reaction can be accurately 
simulated and various individual kcat value can be con-
veniently obtained. The enzyme constraints also add a 
new function to the metabolic network model—predict-
ing the differential expression of enzymes under different 
growth conditions. According to eciJB1325 simulation 
results, when the strain uses xylose other than glucose, 
the expression of xylose metabolic pathway-related 
enzymes, arabinose-related enzymes, β-glucose metabo-
lism-related enzymes, aldehyde reductase, and thiamine 
synthetic pathway-related enzymes were up-regulated, 
which is consistent with the results in the literature [32, 
33]. And eciJB1325 also simulated the up-regulation of 
glucosidase expression when A. niger used maltose as 
substrate [33]. This is valuable as it provides the ability to 
link environmental conditions and protein expression, as 
well as the relationship between protein expression and 
metabolic phenotype.

There is also a limitation for the current eciJB1325 
model. Implementation of enzyme abundance con-
straints depends on accurate kinetic parameters and 
abundance data of enzymes [14]. However, both of 
these data for A. niger are scarce, here in this work 
we applied available data of other strains instead for 
that are missing in A. niger. Furthermore, the kcat val-
ues used in this study are mainly from the BRENDA 

Fig. 11  Differential expression of enzymes under different carbon sources. A the above picture shows the protein whose expression is significantly 
up-regulated when using xylose in eciJB1325, among which the green-labeled protein has been reported in the literature; the following picture 
shows the protein whose expression is significantly up-regulated when using maltose in eciJB1325. The green marked protein is glucosaccharase. B 
the central carbon metabolism pathway of A. niger including xylose metabolism and maltose transformation
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database [25] and mostly based on in  vitro measure-
ments, which may be quite different from in  vivo val-
ues [27]. From model structure point of view, although 
the enzyme constraints have greatly improved the 
predicting ability of GSMM and made the model pre-
diction value closer to experimental measurement, 
the organism system is too complex and precise to be 
completely described by only enzyme constraints. So, 
it is necessary to develop a comprehensive metabolic 
network model, such as ME model [44], ETFL model 
[45], etc. Also, the incorporation of molecular struc-
tures [46] and unsteady-state dynamics [47, 48] into the 
reconstructed genome-scale metabolic models is fast-
growing, which will open up new prospects for system 
biology research.

Conclusions
In this work, we performed large-scale integration 
of enzyme abundance constraints with the genome-
scale metabolic model of A. niger, which significantly 
improved the model’s ability to predict metabolic phe-
notypes and narrowed down the model’s flux solution 
space. The integration of enzyme abundance constraints 
to GSMM model widened the application of proteom-
ics data in systems biology. With the help of proteom-
ics data, the newly formed model can not only improve 
the prediction ability but also can be used for detecting 
target genes for metabolic engineering. The model also 
showed good ability to be used to estimate the enzyme 
turn over number ( kcat ) with a large-scale manner, and 
to predict the enzyme expression level under specific 
growth conditions. This work is an important part of 
the realization of the comprehensive metabolic network 
model of A. niger, and it also inspires the improvement 
of genome-scale metabolic models of other strains and 
promotes the development of GSMM with multi-omics 
integration.
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