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Gold standard for nutrition: a review 
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Abstract 

Human milk is the gold standard for nutrition of infant growth, whose nutritional value is mainly attributed to human 
milk oligosaccharides (HMOs). HMOs, the third most abundant component of human milk after lactose and lipids, are 
complex sugars with unique structural diversity which are indigestible by the infant. Acting as prebiotics, multiple 
beneficial functions of HMO are believed to be exerted through interactions with the gut microbiota either directly 
or indirectly, such as supporting beneficial bacteria growth, anti-pathogenic effects, and modulation of intestinal 
epithelial cell response. Recent studies have highlighted that HMOs can boost infants health and reduce disease risk, 
revealing potential of HMOs in food additive and therapeutics. The present paper discusses recent research in respect 
to the impact of HMO on the infant gut microbiome, with emphasis on the molecular basis of mechanism underlying 
beneficial effects of HMOs.
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Background
It is widely acknowledged that breastfeeding is not only 
an evolutionary optimized means for feeding babies since 
ancient time but also the gold standard for infant nutri-
tion, and World Health Organization (WHO) stipulates 
that mother should exclusively breastfeed her infant for 
the first 6  months since birth [1–3]. On the one hand, 
breastfeeding offer infants nutrients needed for healthy 
development and growth [4, 5]; on the other hand, 
breastfeeding also provide infants with protection against 

gastrointestinal and respiratory infections, and a reduced 
incidence of various diseases, such as obesity, diabetes, 
atopy, and asthma [6–12]. Besides, breastfeeding is ben-
eficial to both babies and their mothers [13]. With recent 
advances and development in analytical tools for struc-
tural characterisation, scientists are engaged in the pro-
cess of identifying the composition of human milk, which 
is featured by abundant and diverse human milk oligosac-
charides (HMOs) [14]. Back to the end of the nineteenth 
century, the phenomenon that bottlefed infants had a 
much lower survival rate and a higher chance of infection 
in comparison to breastfed infants, aroused the scientific 
interest in the composition of human milk whose posi-
tive effects benefit infant health in early life. In 1900, dif-
ferences in the bacteria composition between breastfed 
and non-breastfed infant feces were noted, and bifido-
bacteria seemed to enrich in breastfed infant stool [15]. 
With another 50-plus years efforts on HMO research, 
the bifidogenic factor in human milk was identified as 
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oligosaccharides (OS) containing polysaccharides and 
N-acetylglucosamine (GlcNAc) [16–18]. Nowadays, 
more than 200 HMOs have been identified and many 
beneficial effects of human milk attribute to HMOs that 
are believed to be exerted through interactions with the 
gut microbiota [19]. Among components of human milk, 
lactose and lipids are the main source of energy to the 
infants which provide the uppermost source of carbohy-
drates at the average concentration of 30–70 g/L [20–22]. 
Compared with lactose and lipids, HMOs are the third 
largest solid component of human milk which are only 
slightly hydrolyzed and eventually accumulate in infant 
gastric intestinal tract. HMOs are complex carbohydrates 
and known to function as prebiotic serving as substrates 
for certain gut microbes in the colon tract due to their 
indigestible property to the infant [23, 24]. Though well 
regulated, the development of a healthy host-microbe 
symbiosis in the newborn gastrointestinal tract, which is 
an extremely complex and crucial biological process, is 
still a highly vulnerable period [25, 26]. Breastfed infants 
are featured by abundant bifidobacteria in gut micro-
biota, which is considered safe and beneficial to infants 
[27]. Besides, HMOs are increasingly linked to protection 
against causative organisms, such as pathogenic bacte-
rium, virus, protozoan parasite, and fungus.

This review presents current advances in respect to the 
impact of HMO on the infant gut microbiome, and the 
critical insight into the beneficial effects of HMOs and 
the mechanism behind them.

HMOs
Chemical structure of HMOs
HMO is a collective terms referring to a group of various 
OS which is present in human milk and they are made 
up of five basic units including one acid monosaccharide, 
namely sialic acid (Sia) or N-acetylneuraminic acid; one 
amino sugar which is known as GlcNAc; three monosac-
charides which are l-fucose (Fuc), d-galactose (Gal), and 
d-glucose (Glc) [28]. Although the combination of these 
five building blocks in diverse directions and sequences 
is immense, only approximately 200 different HMOs have 
been characterized so far and 50 compositions of HMOs 
are assumed to represent 99% of HMO abundance in 
human mother’s milk [19, 24]. All HMOs contain a lac-
tose core (Galβ-1,4Glc) at the reducing end [29], which 
can be further lengthened enzymatically by β1–3 or 
β1–6 linkage to either Galβ1–3GlcNAc (lacto-N-biose, 
LNB, type-1 chain) or to Galβ1–4GlcNAc (N-acetyl-
lactosamine, type-2 chain) [30]. Besides, the core HMO 
structures can also be decorated by Sia via α2–3 or 
α2–6 linkages and/or Fuc via α1–2, α1–3, or α1–4 link-
ages at the terminal positions [30]. Therefore, HMO can 

be mainly classified into three groups: fucosylated OS 
(FucOS), sialylated OS (SiaOS), and neutral OS (Fig. 1).

Concentration of HMOs in human milk
Human milk is regarded as the golden standard for new-
born babies [20] thanks to its variable composition of 
nutrients which contributes to the protection against 
pathogenic bacteria or viruses [31], prevention against 
bowel inflammation, and constructive modulation of 
the immune system response during the development 
of infants [32, 33]. Although composition of human milk 
varies from person to person, HMOs are the main nutri-
ents benefitting newborns’ growth. HMOs are abun-
dantly present in human milk representing about 20% of 
all carbohydrate in colostrum [34, 35]. The stage of lac-
tation determines HMOs amount in human milk which 
varies from 20–24 g/L in the earliest human milk to10–
15 g/L in mature milk on average [20, 34–36]. On the one 
hand, the concentration and relative abundance of non 
FucOS and SiaOS declined with time, but on the other 
hand, the relative abundance of FucOS increased despite 
their decreased concentration [35]. In comparison to the 
amount of OS in cow’s milk (up to 1 g/L in the earliest 
milk and 0.05–0.1 g/L in mature milk which remarkably 
depends on inter-breed and seasonal difference), we can 
find that human milk has up to 22–26 times higher levels 
and a higher variety of OS, indicating that the composi-
tion and structure of HMOs may be far more complicated 
than OS in cow’s milk [37–39].

Endogenous synthesis of HMOs
The polymorphism of several genes contributes to wide 
variability of HMOs during the endogenous synthesis 
process. When it comes to biosynthesis of FucOS, Secre-
tor (Se) gene and Lewis (Le) gene play important roles in 
encoding different fucosyltransferases to determine both 
the quantitative and qualitative composition of HMOs 
[34]. Activation of the Se gene leads to the expression of 
α1-2-fucosyltransferase enzyme (FUT2) who is responsi-
ble for lengthening the terminal Gal of the type-1 chain 
of HMOs by Fuc via α1–2 linkage [40, 41]. The Le gene 
allows the expression of α1–3/4-fucosyltransferase 
(FUT3) to add Fuc with α1–3/4 linkage to a subterminal 
GlcNAc of the type-1 chain of HMOs [42, 43]. Accord-
ing to the different expression of both Se gene and Le 
gene, mothers can be classified as either positive (+) or 
negative (−) for both genes and divided into four differ-
ent groups (Fig. 2): Se(+)Le(+), Se(−)Le(+), Se(+)Le(−), 
and Se(−)Le(−) [41, 44], where 70% are Se(+)Le(+), 20% 
Se(−)Le(+), 9% Se(+)Le(−), and 1% Se(−)Le(−) [36, 45–
47]. For females who belong to the Se(+)Le( +) genotype 
and therefore have functional FUT2 and FUT3 enzymes, 
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Fig. 1  Structures of main HMOs. HMO is made up of five basic units: Sia, GlcNAc, Fuc, Gal, and Glc [28]. All HMOs contain a lactose core which can 
be further lengthened by LNB (type-1 chain) or N-acetyllactosamine (type-2 chain) via either β1–3 or β1–6 linkage [30]. Based on the core HMO 
structures are sialylated and/or fucosylated, they can be mainly classified into three groups: FucOS, SiaOS, and neutral OS [30]. Structures of the 
main HMO are showed

Fig. 2  Four phenotypes of FucOS were produced by Se and Le genes [41, 44]. Se and Le genes play an important role in determining the 
composition of FucOS [34]. FUT2 is encoded by the first gene whereas FUT3 is encoded by the second one [40–43]. According to the activation 
state of genes, mothers can be classified as either positive (+) or negative (−) for both genes, where 70% are Se(+)Le(+), 20% Se(−)Le(+), 9% Se(+)
Le(−), and 1% Se(−)Le(−) [36, 45–47], and phenotypes to production of FucOS and main FucOS synthesized are showed
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all types of FucOS can be found in their milk. The Se(−)
Le( +) women produce milk containing FucOS with α1,3 
and α1,4 linkages such as lacto-N-fucopentaose (LNFP) 
II, LNFP III, and 3-fucosyllactose (FL). Mothers with the 
Se(+)Le(−) genotype can synthesize LNFP I, LNFP III, 
2′-FL, and 3-FL. Those identified as Se(−)Le(−) are capa-
ble of producing FucOS with α1,3 bonds such as LNFP 
III, LNFP V, and 3-FL. However, under some circum-
stances the biosynthesis of FusOS cannot be perfectly 
elucidated by the expression of Se and Le genes, implying 
that there might be an unknown FUT taking part in this 
process or an unidentified synthetic pathway independ-
ent from FUT [19, 44, 48–51].

As for biosynthesis of SiaOS, two genes namely Le and 
ABH are implicated in this process. Low levels of SiaOS 
are observed in the milk of mothers with the ABH(−)
Le(−) genotype, while those representing the ABH(+)
Le(+) genotype can express high levels of SiaOS such 
as disialyllacto-N-tetraose (DSLNT), LS-tetrasaccharide 
(LSTa), 3′-sialyllactose (SL), and 6′-SL [52–54].

Moreover, biosynthesis of core OS contributes to 
increased variability of HMO structures in human 
milk. There are four glycosyltransferases activated 
in this course: β3-galactosyltransferases and β4-
galactosyltransferases are responsible for Gal reloca-
tion, while β1,3-N-acetylglucosaminyltransferase (iGnT) 
and β1,6-N-acetylglucosaminyltransferase (IGnT) are 
involved in the GlcNAc transfer [55, 56].

Of note, besides various genes participating in HMOs 
biosynthesis, it is believed that there are other factors 
also influence endogenous synthesis of HMO. Though 
total HMO concentration decreased substantially over 
the course of lactation [35], a more significant decrease in 
HMO would occur in the effect of the seasonal changes 
and certain nutritional conditions of the mother. In Gam-
bia, lactating mothers who nursed their children during 
the wet season produce milk with lower HMO concen-
tration in comparison to those nursing in the dry sea-
son when the food is more plentiful and energy intake 
is higher [57]. Besides, a Canadian study suggests that 
other seasonal factors such as climate, sunlight, and aller-
gen exposures might influence HMO synthesis in Cana-
dian population [45]. Similarly, the HMO composition in 
breast milk may be changed when mothers are supple-
mented with a mixture of probiotics during late stages of 
pregnancy. Seppo et al. showed that the concentrations of 
3-FL and 3′-SL were significantly higher in the colostrum 
of mothers who received probiotic supplementation than 
in control participants; however, the total concentration 
of HMOs still decreased in colostrum from the moth-
ers in the probiotic supplementation group due to the 
lower levels of difucosyllacto-N-hexaose, lacto-N-tetra-
ose (LNT), LNFP I, and 6′-SL [58]. Another study also 

indicated the positive association between SiaOS con-
centration and vitamin A intake [59], while a lipid-based 
nutrient supplement showed no effect on HMO concen-
tration [60]. When it comes to the effect of maternal age, 
weight, body mass index, and parity on the endogenous 
synthesis of HMO, there is a contradiction between dif-
ferent studies [45, 47, 57, 61]. In brief, studies mentioned 
above all suggest that wide variability of HMOs due to 
the genes polymorphism and environmental condition 
may have different effects on gut microbiota develop-
ment, infant health, and disease risk.

Metabolism of HMOs
HMOs are resistant against an infant’s digestive enzymes 
and can remain their special structural configuration 
through the proximal intestine, which has been affirmed 
by several clinical studies [54, 62–64]. Then they would 
reach the distal intestine serving as a substrate fermented 
by specific intestinal microbiota, such as Firmicutes, 
Proteobacteria, and especially Bifidobacterium spp. [39, 
63, 65–67]. In particular, HMOs degradation mediated 
by Bifidobacterium spp. can be divided into two strate-
gies. The first approach is initialed by the importation of 
complete HMOs into the cytoplasm through adenosine 
triphosphate binding cassette (ABC) transporter, which 
will be hydrolyzed by intracellular glycosidases, while the 
other one depends on cell wall-anchored secretory glyco-
syl hydrolases (GHs), which hydrolyze HMOs and release 
monosaccharides and disaccharides [68, 69]. For exam-
ple, B. bifidum uses extracellular hydrolases releasing 
LNB which is the core structure of type-1 HMO, while 
B. infantis and B. breve use oligosaccharide transport-
ers [70]. However, the HMOs degradation pattern of B. 
longum depends on strains and the existence of lactam-
N-biogenase (LnbX). LnbX-negative B. longum utilizes 
oligosaccharide transporters to assimilate HMO deriva-
tives internally, whereas LnbX-positive B. longum utilizes 
extracellular hydrolases [71]. Furthermore, depending on 
the consumption of certain HMOs, some microbes that 
are capable of catabolizing HMOs will obtain predomi-
nation over others [72, 73], which function as a probiotic 
shaping the infant’s intestinal microbiota [74, 75]. For 
instance, the predominant presence of intestinal bacte-
ria from Bifidobacterium spp. has been related to human 
milk with a higher content of sialyllacto-N-tetraose b 
(LSTb), monofucosyllacto-N-hexaose (MFLNH)- III, 
DSLNT, LNFP I, LNFP III, and LNFP V; whereas 2’-FL, 
lacto-N-hexaose (LNH) and two of its isomers found in 
human milk benefited the growth of Bacteroides spp. [63, 
66, 76].

After ingested, about 99% of HMO reach the intes-
tine and nearly 45% of them are fermented by intesti-
nal microbiota, while 1–4% and 40–50% of total HMOs 
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ingested are excreted in the urine and feces, respectively 
[54, 62]. The remaining 1% are absorbed at concentra-
tions of 0.10–0.20 g/L, resulting in plasma concentration 
of 0.01–0.10  mg/L [20, 77, 78]. According to Goehring 
et al. [54] and Vazquez et al. [78], 2′-FL and lacto-N-ne-
otetraose (LNnT), which are smaller molecular weight 
HMOs, are absorbed quickly into bloodstream and 
excreted in the urine without metabolism, suggesting that 
certain HMOs in urine may reflect the mother’s secretor/
nonsecretor status, whereas HMOs with fecal excretion 
varies remarkably correlating with infant’s different intes-
tinal microbiota [62]. Notably, some novel HMOs that 
not related to common HMOs are found in infant’s urine 
and feces due to microbial metabolism [62], showing dif-
ferences in the metabolism patterns of HMOs. Further-
more, in contrast to traditional cognition that the infant 
has contact with mother’s HMOs through postnatal feed-
ing, recent studies revealed that the fetus might have 
been already exposed to HMOs in utero given the pres-
ence of HMOs in mothers body fluid during pregnancy 
and in amniotic fluid at delivery [79, 80].

Microbiota
HMOs once ingested begin to interact with various 
microbes including bacteria, viruses, protozoan para-
sites, and fungi inside the infant body leading to a series 
of constructive effects indirectly [81]. Therefore, a bet-
ter understanding of neonate microbiota will definitely 
advance our insight into the positive role of HMOs.

After the process of giving birth, bacteria colonize in 
the relatively sterile gastrointestinal tract of the newborn 
rapidly, which marks the beginning of the highly com-
plex formation of the microbiota [82, 83]. Therefore, the 
first year of newborn’s life is crucial for the establishment 
of the intestinal microbiome, which underlies the folate 
production, reduction of allergic diseases, increased 
immune responses to vaccinations, synthesis of essential 
vitamins and other molecules that serve as modulators of 
physiological responses and are used as energy source by 
the intestinal epithelium [84–89]. The earliest gut micro-
biome is characterized by the colonization of facultative 
anaerobes, such as streptococci, enterococci, and staphy-
lococci [82]. As the main component of infant diet, the 
wide presence of HMO in human milk act as one of the 
most vital factors shaping the latter gut microbiome that 
represented by Bacteroides spp., Clostridium spp., and 
especially Bifidobacterium spp. with up to 90% of total 
microbes within the first 3 months of the baby’s life [90, 
91].

Bifidobacteria are gram-positive and heterofermenta-
tive obligate anaerobes which are among the first bacte-
ria to inhabit human digestive tracts [92], with 78 species 
and 10 subspecies classified to date [93–96]. About ten 

(sub)species were isolated from human feces and certain 
species seem to be frequently found in the infant gut, 
such as B. breve and B. infantis [97–100], while other spe-
cies, such as B. longum, B. pseudocatenulatum, and B. 
bifidum are likely to inhabit both in the infant and adult 
gut microbiome [101, 102]. Besides, Bifidobacterium 
spp. remain the dominant bacteria in infant gut micro-
biota during breast-feeding, yet the relative abundances 
quickly decline after weaning [98, 103], during when the 
compositional change takes place at species level [104], 
indicating the direct correlation between HMOs and 
developing infant microbiota. According to several stud-
ies, a significant decline in fecal HMOs was positively 
correlated with high levels of HMO-consuming bifido-
bacteria [76, 97]; furthermore, a specific β-galactosidase 
from B. longum was applied to catabolize HMOs in vitro, 
whose catabolized fragments were found to match with 
compounds identified in infant fecal samples [105]. Sub-
sequent studies focus on the consumption of HMOs by 
Bifidobacterium spp. As Ward et al. reported, B. infantis 
ATCC 15697 was observed to use HMOs as a sole car-
bon source [106], and studies conducted by Garrido et al. 
showed a similar result that isolates of B. infantis grew 
well on pooled HMOs and individual HMO sugars while 
some examined strains of B. bifidum could not grow with 
2′-FL and 6′-SL as a sole carbon source [68]. Notably, 
while HMOs are mainly consumed by bifidobacteria, it 
is undoubted that certain isolates of bifidobacteria have 
stronger capability to ferment HMOs, meanwhile, some 
types of HMO are more frequently assimilated by bifi-
dobacteria than others. Therefore, accumulating studies 
have tried to figure out the mechanisms of how bifidobac-
teria catabolize HMOs and revealed that the consump-
tion of HMO is well conserved among B. infantis strains, 
fermenting all classes of HMO [68, 107, 108]. Take B. 
infantis ATCC 15697 for example, this strain of B. infan-
tis can utilize several types of HMO including sialylated 
and fucosylated molecules [108]. The genome sequence 
of B. infantis ATCC 15697 showed a great number of 
HMO-utilization genes located in a specific segment of 
the genome, namely HMO cluster I [109], whose expres-
sion led to up-regulation of GHs [110] and family 1 solute 
binding proteins (SBPs) that is a part of ABC transport-
ers for HMOs [111]. The process of HMO consumption 
begins with the SBPs-mediated importation of intact 
HMOs inside the cytoplasm, then HMOs were assimi-
lated intracellularly by several GHs releasing large quan-
tities of lactic and acetic acid, who play an important role 
in modulating intestinal physiology and protecting infant 
gut from pathogen colonization [112–114]. Besides, 
RNA-seq transcriptomic analysis also revealed that 6’-SL, 
lacto-N-tetraose, and LNnT could induce the expression 
of HMO-utilization genes in the HMO cluster I, whereas 
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alternate gene clusters other than HMO cluster I seem 
to be induced to utilize Fuc during growth in presence of 
2’-FL and 3-FL [68]. In brief, all these analyses are crucial 
for further studies to deepen the understanding of regu-
latory networks behind HMO consumption and of how 
HMO consumption is associated with the gut microbiota 
establishment in breast-fed infants, underlying the design 
of novel HMO analogs targeting selected beneficial bifi-
dobacteria [70, 115, 116].

Apart from promoting the growth of beneficial bac-
teria, HMO-mediated anti-bacterial effects have been 
observed in Campylobacter jejuni [117], Escherichia 
coli pathogenesis [31, 118], and Listeria monocytogenes 
[119–121]. HMOs can also act as antiviral agents to pro-
vide protection against a number of viral pathogens, such 
as norovirus [122, 123], rotavirus [124], and respiratory 
virus [125, 126], through several mechanisms. Besides, 
despite the limited studies which assess the activity of 
HMOs against protozoan parasites and fungal species, 
the findings from these studies demonstrated that HMOs 
can reduce infection by Entamoeba histolytica [127] 
and Candida albicans [128]. In conclusion, HMOs have 
a great influence on infant microbiota, indicating their 
potential as novel candidates for further developments in 
food additive to infant formula milk and therapeutics tar-
geting pathogenic infection.

Effects of HMO on infant gut microbiota
Diverse functions of HMOs have been demonstrated, 
such as regulating microbiota composition, protecting 
against pathogen adhesion and infection, and modulat-
ing epithelial cell response. In the section below, we will 
focus on the functions that attribute to HMOs and the 
mechanism underlying the beneficial effects of HMOs.

Effects of HMO on microbiota composition
HMOs have an important influence on bacteria coloniza-
tion in the intestine that is necessary for infant health. In 
early life, 1014 bacteria colonized the intestine [129]. The 
first year of infant life is critical for intestinal microbiome 
establishment, and infant diet is of importance for gut 
microbiome development [90]. HMOs are not digested 
in the top half of the gastrointestinal tract of infants, 
due to the lack of GHs and intestinal membrane trans-
porters [130, 131]. As a consequence of high concentra-
tion, HMOs can reach both the small and large intestine, 
where they serve as substrates for resident microbes, 
affecting the composition and activity of the gastrointes-
tinal microbiota [132] (Fig.  3A). HMOs are specifically 
known to support the growth of beneficial microorgan-
isms, such as Bifidobacterium [133], which is generally 
calculating for 50–90% of the total bacterial population 
detected in the feces of breastfed infants [134]. Genomic 

analysis of particular infant-derived Bifidobacterial 
strains has revealed that aggregation of transporters, 
GHs, and carbohydrate-binding proteins contributes 
to the degradation of HMOs [135]. The expression of 
HMOs-degrading enzymes is mainly limited to B. breve, 
B. bifidum, B. longum, and B. infantis [136, 137]. Besides, 
Bifidobacteria and Lactobacilli express sialidases and 
fucosidases to cleave Sia and Fuc, respectively, indicating 
the coevolution of these species and HMOs [107].

Bifidobacterium also have an impact on other micro-
organisms composition. Asakuma et  al. found that B. 
bifidum can secrete GHs to degrade HMOs extracellu-
larly, and then leave metabolized sugars outside the cells, 
which are utilized by other bacteria to produce short 
chain fatty acids (SCFAs) such as butyrate and propion-
ate [138]. Butyric acid and propionic acid are essential 
for intestinal health given that they can interact with 
host epithelial cells to stimulate mucin release, increase 
mucosal blood flow, and regulate immunity [139, 140]. 
E. hallii, which is a common member of the adult gut 
microbiota, cannot grow by using Fuc. However, when 
cocultured with B. infantis, it can utilize 1,2-propan-
ediol (1,2-PD), which is produced by B. infantis through 
resolving Fuc, revealing a trophic interaction between E. 
hallii and B. infantis [141].

Apart from the capability of HMOs to modulate the 
composition of Bifidobacteria in the intestinal tract, they 
can directly interact with other bacteria and affect the 
distribution of gut microbes. 2’-FL, 3-FL, 3’-SL, 6’-SL, 
and lactodifucotetraoseare (LDFT) are metabolized by 
many Bacteroides [142]. Besides, HMO-derivatives LNB 
and Lacto-N-Triose II can be used by L. casei [143]. In 
conclusion, though the species of gut microbes except 
bifidobacteria have low capacity, they still play an impor-
tant role in intestinal homeostasis of breastfed infants 
[144].

Additionally, HMOs can pass gut-barrier so that they 
have an effect outside the intestines [145]. HMOs have 
been demonstrated to activate G protein-coupled recep-
tors (GPCRs) which can influence almost every physi-
ological function, such as development, taste, olfaction, 
regulating heart rate, hormone signaling, and neuro-
transmission [146] in two ways: one pathway is direct 
activation by 6′-SL and LNT, the second is increased 
production of kynurenic acid (KYNA) by the microbiota 
which in turn activates GPR35 [147].

Effects of HMO on preventing pathogen infection
Several bacteria, viruses, fungi, and protozoan parasite 
need to adhere to the glycocalyx (the carbohydrate-rich 
layer coating epithelial cells) first to invade the host and 
cause diseases [148], while HMOs can prevent the infec-
tion by acting as soluble decoy receptors, which combine 
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with pathogens to avoid them from binding to epithelial 
cell surface receptors, therefore, the pathogens would 
pass gastrointestinal tract harmlessly [149] (Fig. 3B).

Bacterial infection
Campylobacter jejuni seems to be one of the most com-
mon causes of diarrhea which leads to infants death 
[150]. 2’-FL acts as a soluble decoy receptor for C. 
jejuni, reducing the colonization of C. jejuni by 80% 
[117, 151]. Enteropathogenic Escherichia coli (EPEC) 
can cause serious diarrheal disease leading to high 
mortality rates in infants. A significant reduction of the 
pathogenic colonization is observed in cultured epi-
thelial cells by pre-incubating EPEC with mixed HMO 
components [118]. 2′-FL and LNFP I not only reduce 
the adhesion of pathogens but also decrease patho-
genicity by binding to heat-labile enterotoxin type 1 
[31]. It also plays a role in immunity and urinary sys-
tem. Lately, He et  al. found that lipopolysaccharide-
mediated inflammation was directly inhibited by 2’-FL 
during the process of enterotoxigenic Escherichia coli 

(ETEC) invading T84 and H4 intestinal epithelial cells 
[152]. Similarly, uropathogenic Escherichia coli (UPEC) 
would be prevented from attaching to epithelial cell 
monolayers in the presence of 15 mg/mL HMOs, which 
delay the p38 MAPK and p65 NF-κB signaling path-
ways [153].

Aside from decreasing the adhesion and invasion 
of pathogens, HMOs can modify the gene expression 
of epithelial surface and inhibit the growth of patho-
gens to reduce their infection. After pre-incubating 
with HMOs, genes of Caco-2Bbe gut cells that medi-
ate the adhesion between intestinal epithelial cells and 
L. monocytogenes would be downregulated due to the 
activation of unfolded protein response and eIF2 sign-
aling [119]. Another study revealed that growth and 
biofilm formation of Group B Streptococci (GBS) can be 
modulated by HMOs as well. In specific, the concentra-
tion of HMOs between 1–2 mg/L delays the growth of 
GBS up to 96–98%, and LNT and lacto-N-difucohexa-
ose (LNDFH)-I showed the highest capability of inhi-
bition [121]. Besides, the combination of HMOs and 

Fig. 3  Schematic summary of main effects of HMOs. A HMOs stimulate growth of beneficial bactria, such as Bififidobacteria, and inhibit growth of 
harmful bacteria to regulate gut microbiota composition [132]. B HMOs serve as pathogen binding decoy receptors to prevent pathogens from 
binding to epithelial cell receptors [149]. C HMOs alter glycocalyx [171], influence epithelial cell proliferation [168] and modulate tight junction 
protein expression [167], thereby reducing permeability of the gut barrier
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vancomycin or ciprofloxacin will improve the curative 
effect of these antibiotics [120, 154].

Viral infections
HMOs can improve infant resistance to two fatal gas-
trointestinal infections caused by rotavirus and norovi-
rus [124, 155]. Mechanical studies revealed that HMOs 
provided protection against viral infections by mimicking 
receptor sites to prevent viruses from entering host cells 
[156] and stimulate immunity through γ-interferon and 
IL-10 expression to decrease virulence [157].

Most recently, 2′-FL, 3′-SL, and 6′-SL were demon-
strated to have a notable antiviral activity against G1P[8] 
and G2P[4] rotavirus. 2′-FL significantly inhibited G1P[8] 
rotavirus infection, while a conjugate of 3′-SL and 6′-SL 
had the strongest ability to inhibit G2P[4] rotavirus infec-
tion [124]. However, HMOs cannot inhibit all kinds of 
rotavirus infections, such as neonatal rotavirus G10P[11], 
it has a dose-dependent enhancement in infectivity with 
the increased concentration of LNT and LNnT [155].

HMOs have also been shown to function as antivi-
ral agents to prevent norovirus infection. Histo-blood 
group antigens (HBGAs), which function as key binding 
sites for norovirus adhesion, are carbohydrate epitopes 
not only present in the surface of red blood cells, but 
also in mucosal epithelium of the gastrointestinal tracts, 
genitourinary tracts, and the respiratory tubes [28]. They 
also act as free oligosaccharide fluids in the physiologi-
cal system [158, 159]. Norovirus can bind to high-mass 
HMOs containing abundant α-fucose due to the similar 
structure to HBGAs [122], resulting in the reduced infec-
tion of breastfed infants. Similarly, Fuc and Glc were the 
fermentation products of 2’-FL and 3’-FL, which can con-
nect to GI.1, GII.17, and GII.10 noroviruses by interact-
ing with amino acids expressed in noroviruses to prevent 
norovirus from binding to HBGAs [123, 160].

In addition to preventing the gut virus, HMOs also can 
inhibit respiratory virus infections [161]. 2′-FL has been 
shown to reduce viral load of respiratory syncytial virus 
[162]. And further research showed that the 2′-FL is pos-
sible to enhance innate and adaptive immunity in influ-
enza-specific murine model [125].

Protozoan parasite infections
Beyond acting as an inhibitor of bacterial and viral path-
ogens, HMOs significantly prevent protozoan parasite 
infections as well. Entamoeba histolytica is an anaero-
bic amoebozoan which causes 55,000 deaths worldwide 
every year [163]. An in  vitro study demonstrated that 
LNT which contains the terminal Gal structure can act as 
soluble decoy receptors to prevent Entamoeba histolytica 
from attaching to intestinal epithelial HT-29 cells [127].

Fungal infection
The impact of intestinal fungus on infant health is espe-
cially significant in early gestational age. For example, the 
invasion rate of systemic candidiasis in infants approxi-
mately reaches 10% and the mortality rate is about 20% 
[164]. A recent study showed that HMOs downregulated 
ALS3 that encoded the C. albicans hyphal-specific adhe-
sion, and nascent hyphae expression, resulting in the 
reduced adhesion between C. albicans and epithelial cells 
at early infection phase. Additionally, the intestinal epi-
thelial cell binding sites on the surface of C. albicans are 
blocked by HMOs as well [128].

Effects of HMOs on modulating epithelial cell responses
HMOs not only influence microbes intensely but also 
have a direct effect on intestinal epithelial cells (Fig. 3C). 
The intestinal epithelium covering the small intestine 
and colon is regarded as a paramount part of innate 
immunity, serving as a physical and speed limit barrier 
between intestinal cavity and circulatory system [165]. 
The tight junctions connecting epithelial cells determine 
the permeability of the epithelium, which is known as 
permselective barrier. It modulates the process of macro-
molecules and ions passing the pore and leak ways, avoid-
ing the absorption of harmful microbes and compounds, 
and regulating the transportation of electrolytes and 
nutrients [166]. HMOs can modulate the expression of 
tight junction protein, thereby decrease the permeability 
and enhance the barrier effect of the epithelium. 2-′FL, 
6-′SL, or LNnT can arrest G2/M cell-cycle of HT-29 and 
Caco-2Bbe, which belongs to small intestinal cell lines, 
to inhibit the proliferation of HT-29 and Caco-2Bbe in 
preconfluent phase, leading to the maturation of HT-29 
and Caco-2Bbe given that the differentiation and prolif-
eration are inversely proportional in preconfluent cul-
tures; besides, the high concentration of LNnT and 2′-FL 
can also enhance barrier function and promote digestion 
[167]. Further study showed that whether HT-29 and 
Caco-2Bbe were treated with individual or compositional 
2′-FL, 3′-SL and 6′-SL, the proliferation of them would 
be reduced and the differentiation would be increased in 
preconfluent transformation, all of which can promote 
the maturation of HT-29 and Caco-2Bbe cell lines [168]. 
Furthermore, HMOs can upregulate the expression of 
Muc2 which is the predominant form of mucin in the 
small intestine leading to descended bacterial adhesion 
and permeability of the intestinal epithelium [169].

The unproper development of glycocalyx on neonatal 
gut epithelium will disorder the gastrointestinal system 
[170]. A recent study indicated that 2′‐FL and 3′‐FL pro-
moted glycocalyx development in a structure‐dependent 
fashion and gut barrier will be enhanced subsequently 
[171]. Besides, the transformation from sialylation to 
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fucosylation benefits the maturation of intestinal epithe-
lium [172], which means HMOs can regulate intestinal 
epithelial cells through modulation of intestinal glycome 
[173]. Angeloni et  al. discovered that the expression of 
sialyltransferases ST3Gal1, ST3Gal2, and ST3Gal4 would 
be decreased in the presence of 3′‐FL, leading to the 
reduction of α2-3-, α2-6-sialylation on Caco-2Bbe sur-
face, which results in the reduced adhesion of E. coli by 
50% [174].

HMOs also show indirect effects on epithelium after 
fermented by B. infantis. A study has reported that 
the conditioned media of B. infantis (BCM) enhanced 
expression of occludin and junctional adhesion molecule 
in either HT-29 or Caco-2Bbe, which can improve intes-
tinal barrier function [175]. BCM also increased clau-
din-1 protein expression, by which the gut barrier was 
strengthened [176]. And the BCM might prevent IL-1b 
stimulation to protect Caco-2Bbe through NF-κB path-
way as well [177].

Conclusion and future perspectives
HMOs are complex carbohydrates synthesized in breast 
gland which are abundant in human milk. Different kinds 
of HMOs directly or indirectly modulate the infant’s 
physiological systems by regulating microbial composi-
tion, preventing pathogens adhesion and invasion, and 
regulating intestinal epithelial cell response.

Currently, HMOs have been synthesized artificially as 
additives in infant milk formulations for the infants who 
cannot be fed with breast milk to support their growth 
and provide protection against different diseases which 
have a high morbidity in babys’ early years [171, 178]. 
Some studies have shown the superior assimilation and 
toleration of 2′-FL and LNnT by infants [179, 180], mean-
while other HMOs still have challenges in expensive syn-
thesis. Given that, the European Union and the United 
State consider 2′-FL and LNnT are qualified to be used 
in infant formula [181]. A clinical study showed that for-
mula with 2’-FL can inhibit inflammatory cytokine pro-
duction and the results of the formula group are similar 
to the breastfed group [182]. The other study revealed 
that the formula 2′-FL and LNnT would keep infants 
healthy whose parents have respiratory tract infections 
and bronchitis [180]. Recently, it was found that the addi-
tion of 2′-FL and LNnT to infant formula would shift the 
microbiota toward the microbiota of breastfed babies, 
which would increase the quantity of Bifidobacteria and 
decrease the number of Clostridium difficile [183].

The application of HMOs in therapeutic area has been 
reported in recent years. For instance, HMOs have thera-
peutic potential in food allergies. HMO supplementation 
study was conducted in an ovalbumin sensitized mouse 
model consuming 2′-FL and 6′-FL. As a consequence, 

2′-FL and 6′-FL would indirectly stabilize mast cells by 
inducing expression of T regulatory cells, and activate the 
IL-10(+) regulatory cells to reduce the symptoms of food 
allergy [184]. Especially, 6′-FL can suppress the immune 
system greatly by decreasing inflammatory factors and 
chemokines, which inhibit inflammatory cells from flock-
ing in the intestine [184]. Analogously, FUT2-dependent 
breast milk oligosaccharides reduced the occurrence 
of IgE-associated disease and IgE-associated eczema in 
cesarean section born infants [185]. In contrast to these 
findings, pro-inflammatory effect of 3′-SL was reported 
in a mesenteric lymph node CD11(+) dendritic cells 
exposed to 3′-SL, which can generate cytokines that 
increase the quantity of Th1 and Th17 immune cell [186]. 
Besides, clinical studies have confirmed that HMOs 
contribute to the positive effects of human milk against 
necrotizing enterocolitis (NEC) which is a fatal gastroin-
testinal disease in very low birth weight (VLBW) infants 
[187]. DSLNT in breast milk could be used to prevent 
NEC in formula-fed infants, and its concentration in 
the mother’s milk could act as a potential non-invasive 
marker to identify whether infants are at risk of NEC 
[187], while another study including 96 mothers and 106 
VLBW infants demonstrated a contradictory result that 
DSLNT was not significantly associated with NEC [178]. 
2′-FL, 3′-SL, 6′-SL, and LNnT also have a protective effect 
on the development of autoimmune diseases such as 
type-1 diabetes (T1D) which is caused by autoimmune 
destruction of insulin-producing β cells of the pancreas. 
Animal research revealed that HMOs were prone to bal-
ance Th1/Th17 immune responses of non-obese diabetic 
(NOD)-mice, which would reduce T1D occurrence rate 
and inhibit pancreatic insulitis progress [125]. Metabolic 
products of HMOs have been demonstrated in field of 
cognition development [67]. An animal study showed the 
dietary 2′-FL improved cognitive abilities, learning and 
memory in rodents [188]. Furthermore, 3’-SL and 6’-SL 
were able to supported normal microbial communities 
and behavioral responses in stressor-exposed mice to 
prevent stressor-induced effect, and the result revealed 
the evidence of gut microbiota-brain axis [189].

HMOs not merely affect infants, but also have an influ-
ence on adults. 2′‐FL and LNnT can change the micro-
organisms composition of adults, which increasing the 
amount of Bifidobacterium and Actinobacteria, and 
decreasing Proteobacteria and Firmicute [190]. Another 
study revealed that Caco-2Bbe treated with 2′-FL for 
3  weeks showed reduced permeability of monolayers, 
and tight junction proteins, such as claudin-5 and clau-
din-8 were upregulated, which strengthen the gut barrier 
in adults [191].

In conclusion, HMO plays a special role in the preven-
tion and treatment of diseases, thereby maintaining the 
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health of infants and adults. Therefore, the prospect of 
HMO will be exciting, both for the prevention of single 
disease and multiple combined diseases.
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