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Abstract 

Background:  Saccharomyces cerevisiae is a well-known popular model system for basic biological studies and serves 
as a host organism for the heterologous production of commercially interesting small molecules and proteins. The 
central metabolism is at the core to provide building blocks and energy to support growth and survival in normal 
situations as well as during exogenous stresses and forced heterologous protein production. Here, we present a 
comprehensive study of intracellular central metabolite pool profiling when growing S. cerevisiae on different carbon 
sources in batch cultivations and at different growth rates in nutrient-limited glucose chemostats. The latest versions 
of absolute quantitative mass spectrometry-based metabolite profiling methodology were applied to cover glyco-
lytic and pentose phosphate pathway metabolites, tricarboxylic acid cycle (TCA), complete amino acid, and deoxy-/
nucleoside phosphate pools.

Results:  Glutamate, glutamine, alanine, and citrate were the four most abundant metabolites for most conditions 
tested. The amino acid is the dominant metabolite class even though a marked relative reduction compared to the 
other metabolite classes was observed for nitrogen and phosphate limited chemostats. Interestingly, glycolytic and 
pentose phosphate pathway (PPP) metabolites display the largest variation among the cultivation conditions while 
the nucleoside phosphate pools are more stable and vary within a closer concentration window. The overall trends 
for glucose and nitrogen-limited chemostats were increased metabolite pools with the increasing growth rate. Next, 
comparing the chosen chemostat reference growth rate (0.12 h−1, approximate one-fourth of maximal unlimited 
growth rate) illuminates an interesting pattern: almost all pools are lower in nitrogen and phosphate limited condi-
tions compared to glucose limitation, except for the TCA metabolites citrate, isocitrate and α-ketoglutarate.

Conclusions:  This study provides new knowledge-how the central metabolism is adapting to various cultivations 
conditions and growth rates which is essential for expanding our understanding of cellular metabolism and the 
development of improved phenotypes in metabolic engineering.
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Background
Saccharomyces cerevisiae is a well-known popular model 
system for basic biological studies. It is also of con-
siderable industrial interest, ranging from traditional 
bioprocesses of beer and wine production to serve as a 
host organism for heterologous production of commer-
cially interesting small molecules and proteins. S. cer-
evisiae is a respiro-fermentative microorganism with the 
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characteristics of having the long-term Crabtree positive 
effect, which can produce ethanol under aerobic condi-
tions when fed with a high glucose concentration [1]. 
A high level of glucose represses the tricarboxylic acid 
(TCA) cycle and respiration, and pyruvate can overflow 
to ethanol through the high capacity pyruvate decar-
boxylase and constricted flux through pyruvate dehy-
drogenase [2]. Thus, this species can maintain active 
metabolism and growth under many different cultiva-
tion conditions. In this report, we explore how the cen-
tral metabolite pools of S. cerevisiae adjust to the growth 
rate and cultivation conditions, a topic that has only been 
partly addressed in the literature.

The analysis of the metabolome–metabolomics–has 
gone through a remarkable instrumental and methodo-
logical development during the last two decades. NMR 
and mass spectrometry (MS) are the two main detection 
technologies used, the latter with superior properties 
for highly sensitive and comprehensive coverage of the 
metabolome. The MS-metabolomics workflow still faces 
major challenges in all steps, especially high recovery 
sampling and sample processing is a long-standing non-
resolved topic. Besides, the mass spectrometer is a chal-
lenging detector when used for absolute quantification 
purposes [3]. Regardless, high-quality metabolome stud-
ies are continuously reported, adding new knowledge to 
biological function and mechanisms but are also used for 
guidance and evaluation in metabolic engineering pro-
jects [4–6]. Most studies are designed and interpreted 
at a relative scale, i.e. mutant vs. wild-type/ reference 
strains, but the ultimate goal is to report absolute intra-
cellular concentrations [7]. Such information is essential 
to testing and validating kinetic models [8], to increase 
understanding in genotype–phenotype interactions and 
cellular engineering [9–11]. These data will be important 
for further emphasis to integrate different level omics-
data with mathematical models, especially genome-scale 
metabolic models, of biological systems.

The available metabolome databases (e.g. E. coli/ Yeast, 
Human metabolome databases) contain an impressive 
collection of metabolite data but considerably lower 
amounts of information on intracellular concentrations 
[12–14]. Importantly, concentration entries can range 
several orders of magnitude for some metabolites. This 
may be attributed to the fact that different methodologies 
have been applied by different labs and are also under 
continuous development. Furthermore, sampling is often 
performed on cells grown under different conditions and 
in different physiological states. The metabolomics com-
munity has undertaken efforts to standardize metabo-
lomics workflows [15] and an initiative to select a few 
model organisms to advance the field of Metabolomics 
[16].

Our group has developed a set of quantitative LC–MS/
MS methods for central metabolism, all methods using 
[13] C-Isotope dilution strategy for the highest level of 
quantitative precision and accuracy [17–22]. The core 
metabolism is centered on the glycolytic and pentose 
pathways, TCA, and energy-conserving mechanisms. 
Important metabolite classes are sugar phosphates and 
other phosphorylated metabolites, TCA organic acids 
and pyruvate and excreted metabolites like ethanol, lac-
tic and acetic acids, amino acids, nucleoside mono-/di-/
tri-phosphates. These pathways and metabolites not only 
serve to make energy available but also act as a precur-
sor for the macromolecular synthesis and are particularly 
interesting to monitor. We have applied this methodol-
ogy in a previous study to report the absolute intracel-
lular concentration of several popular microbial and 
mammalian model systems, using the early exponential 
growth phase as the reference physiological state [23].

Now, we turn the focus on central metabolite pools 
in baker’s yeast and how the composition varies with 
growth rate and cultivation condition. It has been known 
for many decades that macromolecular composition var-
ies with growth rate [24], but there is limited information 
on how central metabolite pools are adjusted with the 
growth rate. For our study, we chose to use the frequently 
investigated S. cerevisiae cen.pk strain [25, 26]. Boer and 
co-workers ran a series of metabolite profiling of yeast at 
steady-state in chemostats and varied both growth rate 
and nutrient limitations [27]. They reported a strong 
correlation in responses on metabolite concentration 
to nutrient limitations. Christen and Sauer performed 
a combined metabolome and fluxome study on seven 
yeast species, including S. cerevisiae [2]. They found the 
metabolite pool compositions to be mainly species-spe-
cific, but, interestingly, an overarching-species metabolic 
flux correlation for fructose-1,6-diphosphate and dihy-
droxyacetone-phosphate was found. Most metabolome 
studies on yeast do not report absolute concentration 
and focus on using metabolite profiling in strain develop-
ment and stress-situations, e.g. de Ruijer and co-workers 
used a quantitative metabolomics approach for study the 
metabolic burden of recombinant antibody production in 
S. cerevisiae [9], Nishino and co-workers investigated S. 
cerevisiae strains lacking PFK1 and ZWF1 using absolute 
quantitative methodology [28], Jung and co-workers used 
intracellular metabolite profiling for characterization of 
adaptation of S. cerevisiae to furfural stress [29]. These 
high-quality studies provide interesting information on 
how yeast cells adapt to genetic changes and stress expo-
sure. One challenge for such studies is how to interpret 
the metabolite data if a mutant strain is growing at a dif-
ferent growth rate than the wild-type and if the stress 
exposure causes changes in growth rates. It might be that 
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the resulting metabolite profiles are more consequences 
of the adaptation to changes of growth rate rather than 
the direct effect of the stress. A deeper insight into cellu-
lar adaptation at the central metabolome level to growth 
rate is highly needed, from a basic scientific point of view 
but also as a guide for interpretation of other Metabo-
lome studies. The substrate consumption rate is also 
pointed to as a core variable to control the metabolic 
phenotype [30]. This is the background and motivation 
to undertake the present study in the model organism S. 
cerevisiae. Both batch (exponential and stationary phase) 
and chemostats (glucose, nitrogen, and phosphate lim-
ited) at a series of dilution rates i.e. growth rates, were 
included since both bioreactor modes of operation are 
relevant in yeast physiology studies. We included also 
high dilution rates of the chemostats since we wanted to 
study the transition from nutrient limitation to unlim-
ited growth. We envision that more studies, both inter-/ 
intra-species and with variable cultivation conditions 
including various stress testing should follow.

Results
The outline of the Results section is first to present the 
cultivation data as they are important constraints on the 
evaluation and interpretation of the intracellular metab-
olite pool data. This is followed by the presentation of 
the absolute concentration of all individual metabolites 
across all sampling conditions and next pooled into the 
respective metabolite groups. Further, a series of mul-
tivariate analyses were done, both on complete data set 
and within one-variable conditions. Finally, more closer 
inspections with pairwise comparisons are performed.

Cultivation data
Batch cultivation on glucose, fructose, galactose, and 
sucrose. The growth performance of S. cerevisiae CEN.
PK on glucose, fructose, and sucrose (GluFruSuc) were 
nearly similar as indicated by different growth param-
eters such as biomass yield on substrate, specific growth 
rate, specific CO2 evolution rate, specific substrate uptake 
rate (Fig.  1a, tabulated data can be found in Additional 
file 1: Table S1). The exponential phase lasted 7 to 8 h on 
all three carbon sources using the traditional yeast min-
eral medium with 15 g carbon source L−1 (see Additional 
file 2: Figure S1 for online CO2 and O2 offline gas profiles) 
introduced by Verduyn and co-workers [31]. The specific 
growth rates (µ) on glucose, fructose, and sucrose were 
nearly similar having values 0.43 h−1, 0.42 h−1, 0.41 h−1, 
respectively. Sucrose was hydrolyzed into glucose and 
fructose during the cultivation, and it was not detected 
in the broth after three hours of cultivation. Like several 
previous reports, glucose was preferentially consumed 
over fructose, which led to an initial build-up of fructose 

and the presence of fructose in the broth even after con-
sumption of glucose. This may be the reason for a nearly 
similar growth performance on sucrose as compared to 
fructose and glucose. Our result is corroborated with 
previous studies on this strain [32–34], e.g. van Dijken 
and co-workers reported µ of 0.41 h−1 and biomass yield 
of 0.12  g biomass g−1 on glucose and µ of 0.38  h−1 on 
sucrose in shake flasks [25]. The growth performance 
on galactose was contrasted by a 13  h long exponential 
phase, lower specific maximum growth rate of 0.26  h−1, 
low galactose uptake rate, the low release of fermenta-
tive products as ethanol, low CO2 evolution, and O2 con-
sumption rate compared to GluFruSuc (Fig. 1a). However, 
the biomass yield was 0.26 g g−1 DCW after the exponen-
tial phase, which was nearly two-fold higher compared 
to biomass yield after the exponential phase on GluFru-
Suc. This growth performance is similar to the previously 
reported [35]. S. cerevisiae CEN.PK is a Crabtree-positive 
strain and trace amounts of acetic acid, glycerol, succinic 
acid, and α-ketoglutarate (neither reported) were also 
detected in addition to ethanol. The exponential aerobic 
respiratory-fermentative growth phase on sugars was 
succeeded with re-uptake and catabolism of ethanol as 
shown in earlier studies on glucose [25]. Metabolite pro-
filing was performed in this phase also for three sugars 
(GluFruSuc).

Chemostats are strict nutrient-limited over the range of 
dilution rates with constant biomass yield [36]. For this 
study, we also chose to increase the dilution rate above 
this threshold and approaching the maximum growth 
rate,and wash out situation. Extracellular and metabo-
lome samplings were performed after four to six volume 
exchanges where all monitoring parameters were stable 
(except highest dilution rate for phosphate limited).

The carbon (glucose) limited chemostat was operated 
in two different inlet glucose concentrations: low glucose 
(LG, feed glucose concentration of 1 g L−1) and high glu-
cose (HG, feed glucose concentration of 10  g  L−1) but 
still the limiting nutrient (Fig.  1b, c, tabulated data can 
be found in Additional file  1: Tables S2–3). The high-
est tested dilution rate (0.41  h−1) on HG chemostat 
approaches maximum specific growth rate but wash-
out was not observed. Biomass yields were constant 
and at maximum for the two lowest dilution rates (0.12 
and 0.24 h−1) and by-product formation was negligible). 
The respiratory quotient (RQ) was close to one which 
indicates fully respiratory growth. This was corrobo-
rated with previous results where a decrease in glucose 
uptake rates were found to decrease in the secretion of 
the main fermentative product ethanol [2, 25, 37]. The 
threshold for the onset of the Crabtree effect seems to be 
between specific growth rates of 0.26  h−1 and 0.35  h−1 
and approaching the same ethanol yields (YEtOHS) as the 
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Fig. 1  Offline and online cultivation data for Batch (a), Low Glucose limited chemostat (b), High Glucose limited chemostat (c), Nitrogen limited 
chemostat (d), and Phosphate limited chemostat (e). Units for the Yield (Y) and specific rates (q) are given in the text box. RQ is the respiratory 
coefficient (ratio of CO2 production and O2 consumption)
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unlimited batch cultivation on glucose. The threshold 
specific growth rate can be defined as a specific growth 
rate where yeast starts to show respiro-fermentative 
growth. The Crabtree effect is usually discussed as a sugar 
concentration-dependent effect and induced at higher 
concentrations, but in the HG chemostat at µ = 0.35 h−1, 
most of the glucose was consumed, indicating that higher 
growth rates/ glucose consumption rates trigger this 
overflow mechanism also and not only high sugar con-
centrations. An increased specific glucose uptake rate 
enhances the glycolytic flux, which results in the diver-
sion of pyruvate to both directions: TCA cycle and fer-
mentative routes. This was also indicated by a high RQ 
at higher dilution rates. The RQ value higher than one 
indicates the diversion of pyruvate towards fermenta-
tive routes where one mole of pyruvate is consumed to 
produce one mole of carbon dioxide and one mole of 
ethanol without consuming oxygen. The appearance of 
ethanol was reported to be the most sensitive indicator 
for the onset of respiro-fermentative metabolism (van 
Dijken et al. [25]). In any case, this series of growth rates 
are interesting to study at the intracellular metabolite 
pool levels to monitor adaptation from fully aerobic to 
respiro-fermentative metabolism. Growth parameters 
of LG chemostats were the same as HG chemostats for 
comparable dilution rates (Additional file  1: Tables S2, 
3). Ethanol was not detected at the highest dilution rate 
0.31 h−1 which indicates that onset of the Crabtree effect 
is close to 0.35 h−1 in glucose-limited chemostats, while 
ethanol production was observed in galactose batch cul-
tivation at µ = 0.26 h−1.

The nitrogen (ammonium) limited chemostat was 
operated in the range of dilution rates of 0.06 to 0.34 h−1 
and contrary to carbon limitation, the entire growth rate 
range was respiro-fermentative (Fig.  1d, tabulated data 
can be found in Additional file 1: Table S4). The steady-
state biomass and ethanol concentration had a decreasing 
trend with an increase in the dilution rate while the glu-
cose concentration in the outlet was increased with the 
dilution rate. However, on a specific rate basis, there is 
an increased ethanol yield. Also, the increase in dilution 
rate led to the enhancement of specific respiration rate 
and RQ. The contribution of CO2 in the carbon recovery 
was increased at higher dilution rates while the carbon 
recovery was mostly dominated by biomass and ethanol 
production at lower dilution rates. The specific glucose 
uptake rate was higher in nitrogen than glucose-limited 
chemostats at the same dilution rates which indicates a 
higher catabolic activity of glucose when this nutrient is 
not limited.

The phosphorous (phosphate) limited chemostat 
was operated at the dilution rate of 0.06  h−1, 0.12  h−1, 
0.18  h−1. However, a steady-state off-gas composition 

was not observed at 0.18 h−1 after 4–6 volume exchanges 
though the culture was almost stable in terms of optical 
density. Like nitrogen-limited chemostat, the phosphate-
limited chemostat had a higher specific glucose uptake 
rate, RQ, and excretion of fermentative products in com-
parison to the glucose-limited chemostat (Fig.  1e, tabu-
lated data can be found in Additional file  1: Table  S5). 
Ethanol production was also observed at all dilution 
rates, and, interestingly, a higher specific glucose con-
sumption rate and ethanol yield were observed for the 
phosphate limited vs. nitrogen and glucose at the same 
growth rate (0.12 h−1).

In all, our data reproduces previous reports where 
similar conditions were tested, and besides, we included 
conditions where chemostat dilution rates approach 
maximum growth rate. A plot of substrate consumption 
rate vs. growth rate shows a quite linear correlation for 
all conditions, except for the high dilution glucose lim-
ited chemostat that trigger ethanol formation (Additional 
file  2: Figure S12). All these extracellular substrate con-
sumption and production formation rates are important 
data for the interpretation of the endometabolome data 
presented next.

Quantitative profiling of intracellular metabolite pools
Absolute intracellular concentration (in µmole/ g DW 
units) of all quantified metabolites across different cul-
tivation conditions are shown in a logarithmically scaled 
heat-map (Fig. 2, numbers are given in Additional file 3: 
Table S6) with corresponding relative standard deviations 
enclosed in Additional file 2: Figure S2 (also in numbers 
in Additional file  3: Table  S6). At first glance, the over-
all picture indicates a large degree of similarities in the 
metabolite pools, i.e. high abundant amino acids, low 
abundant deoxy -nucleotides, but when summarizing 
individual metabolite pools into respective metabolite 
classes a relatively large variation is detected (Fig.  3). 
First, there is a quite large difference in total metabolite 
pools with the highest in glucose-limited chemostats 
(Fig. 3, upper panel), and on a fractional scale the phos-
phate and nitrogen-limited chemostats stand out with 
relatively lower amino acid pools and higher TCA pools 
(Fig. 3, lower panel). There is also a trend with increased 
total pools with the growth rate for glucose and nitrogen-
limited chemostats. Closing in at the individual mole-
cule level is, as expected, a large range of concentrations 
observed (Additional file 2: Figure S3, left panel) as earlier 
indicated in the heatmap of Fig. 2. Glutamate, glutamine, 
alanine, and citrate are the four most abundant metabo-
lites. Interestingly, glycolytic and PPP metabolites display 
the largest variation among the cultivation conditions 
while the nucleoside phosphate pools display the least 
variations (Additional file  2: Figure S3, right panel). At 
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Fig. 2  Heat-map showing the abundance of individual intracellular metabolite concentration represented in logarithmic scale across different 
cultivation conditions in batch and chemostat
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this coarse level of interpretation, there is no inconspicu-
ous correlation between different batch and chemostat 
cultivations nor Crabtree-effect, i.e. ethanol-producing 
cultivation conditions (all batch, all N- and P-limited che-
mostats and high dilutions rate C-limited chemostats) 
and overall metabolite pool composition.

Multivariate analysis. Submitting the total data set to 
PCA revealed a clear clustering of glucose-limited che-
mostats at all dilution rates vs. the other conditions along 
PC1 of the scores plot, while GluFruSuc batch cultiva-
tions are separated from N-/P lim chemostats along PC2 

(Additional file  2: Figure S4, upper panel). Interestingly, 
the galactose batch is closer to N-/P lim chemostats than 
the GluFruSuc batch conditions. There is also a general 
trend that PC2 separates on growth rate and all glucose-
limited chemostats operating at non-Crabtree conditions 
(i.e. no ethanol production) are collected in the lower 
right quadrant of the scores plot. This view is supported 
by the loadings plots (Additional file 2: Figure S4, lower 
panel) where the growth, substrate, and ethanol rates 
naturally contribute along PC2. Metabolites contributing 
to the PC1 dimension are scattered among the metabolite 

a

b

Fig. 3  The upper bar diagram shows the abundance of the group of intracellular metabolites concentration and the lower bar diagram shows the 
relative fraction of metabolites pools represented in terms of percentage
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classes and no pattern is apparent at this level. However, 
it is worth noting that ATP, ADP, and AMP, and G6P are 
not correlated to growth (orthogonal in loadings plot), 
and glutamate being a central metabolite in nitrogen 
metabolism is almost inversely correlated to substrate 
consumption and ethanol production.

Spearman rank correlation analysis is more suitable for 
the identification of any potential general patterns, with a 
particular focus on the correlation between the extracel-
lular ratesand intracellular data, the former being fluxes 
and the latter pool sizes. The analysis was performed on 
complete data set and localized to the individual five cul-
tivation conditions (1 batch, 4 chemostats). It is rather 
naïve to expect the correlation between the extracellular 
rates (growth, substrate, and ethanol production) and 
the global data set levels, and no apparent trends were 
observed (Additional file 2: Figure S5), neither much on 
the individual cultivation conditions either (Additional 
file  2: Figures  S6–10), maybe except the observation 
in N-limited chemostats that citrate and isocitrate are 
negatively correlated with most other metabolites while 
α-ketoglutarate, being next in TCA, is slightly positively 
correlated to many metabolites (Additional file 2: Figure 
S9). However, one interesting pattern is that there is lit-
tle/no correlation within members of the same metabo-
lite class, rather individual metabolites have no apparent 
correlation within class nor pathways but are scattered 
along the axis on the correlation plots. This contrasts 
with the noticeable difference in metabolite class varia-
tions seen in Additional file 2: Figure S3, right panel.

Next, a more directed correlation analysis was per-
formed between the carbon source consumption rate and 
the other rates (growth, O2, CO2, ethanol) and the intra-
cellular metabolite pools since it has been suggested that 
the substrate rate control the global metabolic phenotype 
[30]. This was performed by single pairwise regression 
analysis and inspection of slopes and r-square values for 
the total data set, and each of individual N lim chemo-
stats, Glim chemostats, ethanol-producing conditions, 
and non-ethanol producing conditions (Additional file 6: 
Table S9). All these different tests are necessary since in 
this study there are multiple variables (unlimited vs. lim-
ited growth, various growth rates, and carbon sources), 
which support respiration only and respiratory-fermen-
tative phenotype. As expected, there is a strong correla-
tion between the substrate consumption and the other 
rates (ethanol and CO2 production and O2 consumption) 
for most of the tests, confirming the summary of many 
studies performed by Huberts and co-workers with a 
particular focus on the correlation between ethanol pro-
duction and substrate consumption [30]. However, no 
unique metabolite(s) stands out with a strong correlation 
to increased substrate consumption when all cultivation 

conditions are included. The correlation of most of the 
metabolites varies considerably among the tests, which 
is not surprising and underlines the flexible adaption to 
various external conditions by the central metabolism. 
Several metabolites, eg. F1,6BP, αKG, Gln are identified 
to play key roles in the regulation of the cell state [38]; 
thus, they should vary in a manner reflecting the chang-
ing conditions that provoke an intracellular response, i.e. 
either to coordinate gene expression or direct regulation 
of metabolic fluxes by enzyme modifications or interac-
tions [22, 39, 40]. Here, one can conclude that neither 
the three mentioned metabolites nor the others co-vary 
solely with the substrate consumption, but other envi-
ronmental conditions and cellular mechanisms matter. 
F1,6BP is still the metabolite with the highest degree 
of correlation, possibly together with the neighboring 
DHAP. αKG is not correlating with the substrate con-
sumption in N lim chemostats but shows only a strong 
correlation in the respiratory Glim chemostats, where 
there is no ethanol production. Gln, on the other hand, 
is correlating with substrate consumption under Nlim 
conditions, and also Glim with and without ethanol pro-
duction. This correlation analysis was redone on a data 
set normalized to total metabolite pools since the total 
metabolite pools vary quite significantly among the cul-
tivation conditions (Fig. 3a), but no obvious new patterns 
emerge during this data processing (Additional file  6: 
Table S9.) No potential outliers were excluded in this first 
round of data inspection, but such trimming of the data 
could potentially reveal stronger correlation patterns.

Pairwise comparisons. Next, pairwise log2 comparisons 
were performed to several selected reference conditions: 
Glucose batch exponential, Glucose batch stationary, 
LG/HG/ Nlim/ Plim chemostats at 0.12  h−1 dilution 
rate (Fig.  4). Statistical analysis (Two-tailed t-test) for 
all pairwise comparisons in Panel A–E can be found in 
Additional file 5: Table S8. The percentage of significantly 
changed metabolites (p < 0.05) is between 50–70% for 
almost all comparisons, although there were no obvious 
patterns among the conditions being discovered from 
this test. However, there are two outliers (Sucrose vs glu-
cose batch exponential growth, and N-lim 0.06 vs 0.12 
dilution rates) with less significantly changed metabolites 
(32 and 23%, respectively).

The metabolites pool composition of fructose and 
sucrose cultivations are not that different from the glu-
cose batch cultivation (Fig.  4a for exponential cultures 
and Panel B for stationary phase/ ethanol consuming 
conditions). Interestingly, G6P, F6P, and Pyr pools are 
quite lower in the fructose cultivation having a higher 
substrate uptake rate and lower ethanol production rate. 
As expected, most of the yeast metabolome on sucrose 
was in between the range of yeast metabolome on 
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Fig. 4  Panels A to G shows relative metabolite concentrations at log2 scale vs. glucose batch cultivation and dilution rate of 0.12 h−1 for chemostat 
cultivations (for individual nutrient limitations). Max values for color formatting are set to -3 and 3
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fructose and glucose. However, growth on galactose leads 
to a different composition of all metabolite classes of the 
central metabolome. If this is due to the catabolism of 
galactose directly or indirectly due the 40% reduction in 
growth rate can’t be separated in unlimited batch growth 
cultivations. The metabolite pools involved in the Leloir 
pathway for galactose assimilation were enhanced several 
folds, while the whole amino acid pool is downregulated 
(Fig. 4a and Additional file 2: Figure S11). The latter can 
be a consequence of the lower growth rate as the amino 
acid pools also went down in the ethanol-consuming sta-
tionary phase of the glucose batch cultivation (Fig.  4c, 
stationary vs exponential glucose batch cultivations). 
Further for the galactose cultivation; among nucleoside 
phosphates, all monophosphates were high in concen-
tration. UDP-glu/gal, UDP-Glc/Gal-NAc were nearly 5 
and threefold higher compared to GluFruSuc cultivated. 
Intermediates in the lower part of glycolysis were down-
regulated while PPP metabolites and especially upper 
glycolytic intermediates were up-regulated several times 
in comparison to GluFruSuc cultivated yeast. DHAP and 
F16BP were several folds lower in comparison to Glu-
FruSuc cultivated yeast. Pools of the TCA metabolites 
citrate, isocitrate, and αKG were higher. Interestingly, all 
metabolite groups except TCA metabolites went down in 
the ethanol consuming phase, the latter pools increased 
2–4 times (Fig. 4c).

The overall trends for glucose and nitrogen-limited 
chemostats are increased metabolite pools with increas-
ing growth rate (Fig. 4d–f). In both LG and HG, chemo-
stats are most glycolytic, PPP, and TCA pools increasing. 
One difference between high and low glucose is the much 
larger upregulation of amino acid pools with the growth 
rate in the HG chemostats (Fig.  4d vs e). The HG car-
bon limited chemostat was characterized by a significant 
reduction in glutamate and the opposite trend with glu-
tamine. This resulted in glutamine as the most dominant 
amino acid which is like the case of batch culture at the 
exponential phase (Fig.  2, Additional file  3: Table  S6). 
Therefore, glutamine concentration can be viewed as a 
signature metabolite showing an abundance of carbon 
sources (glucose or fructose) in the medium.

The increase of amino acid pools is even more promi-
nent for the nitrogen-limited chemostat series (Fig.  4f ). 
There is also a significant increase in glycolytic and PPP 
metabolites. Boer and co-workers (2010) reported that 
glycolytic intermediates adjust to meet growth require-
ments and generally have the tendency to increase with 
increased glucose uptake which is confirmed in our 
study. Interestingly, increased amino acid pools with 
growth rates are not observed for the phosphate limited 
chemostats (Fig. 4g), rather the sharp increase in glyco-
lytic and other phosphometabolite pools and decrease of 

TCA metabolite pools are the most prominent findings, 
but note that only low and medium dilution rates were 
studied under phosphate limited conditions.

Finally, comparing the chosen reference growth rate 
(0.12 h−1) for the three different nutrient chemostat limi-
tations illuminates an interesting pattern: almost all pools 
are lower in nitrogen and phosphate limited conditions, 
except for the TCA metabolites citrate, isocitrate, and  
α-ketoglutarate (Fig. 5a, b). F16BP and DHAP are upreg-
ulated for the nitrogen-limited condition only.

Discussion
This study provides the most comprehensive collection 
of central metabolite concentrations over multiple cul-
tivation conditions in S. cerevisiae. The findings some-
times confirm previous reports where similar cultivation 
conditions have been studied, but and not surprisingly 
there are also some results that point in different direc-
tions, e.g. we find amino acid pool reduction in nitrogen 
and phosphate limited chemostats compared to glucose-
limited, while it was previously reported that glucose 
and nitrogen limitation were characterized by low amino 
acids pools and not phosphate limited chemostats [27]. 
There are many variables in a biological study, from lab 
strain differences, medium composition, and cultivation 
conditions, e.g. in bioreactors can pH and oxygenation 
be controlled but not in shake flasks, that contribute to 
differences in reports from various laboratories. Another 
major reason is the analytical approach. Most previous 
studies report relative values or quantitation based on a 
few standards and GC–MS has been as frequently used 
as LC–MS although LC–MS gradually seems to become 
more dominant. Thus, there are important initiatives to 
establish more standardized metabolomics workflows 
and selection of model organisms [16]. Here, we employ 
three LC–MS methods and all analytes are quantified 
using individual standard curves and 13C-labeled internal 
standards (either commercially available or application of 
13C-glucose yeast extract). Mass spectrometry detection 
is concentration-dependent (the ionization step) and cor-
rection with 13C internal standards dramatically increases 
the precision of the quantitation. The accuracy of the 
13C-Internal standard dilution strategy for LC–MS analy-
sis and highest level reproducible microbial cultivation 
in bioreactors is at the 10–30% relative deviation among 
technical replicas (resampling from the same culture) 
and 10–20% total among biological replicas (independent 
cultivations), implying that more variation is introduced 
during sampling and sample processing and not among 
independent cultivations for single-cell microbial model 
system [23]. Thus, in total, we can discuss true biologi-
cal changes at the levels of 30–50% increase and decrease 
in pools, even for many of the low abundant metabolites, 
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that usually are reported with higher variations. This also 
justifies our revisit to previously reported yeast cultiva-
tion conditions, although this study was also expanded 
with more cultivation conditions and better coverage 
of central metabolite pools. The quantitative Metabo-
lomics methodology has now matured to an advanced 
level and opening for comprehensive studies of metabolic 
responses to e.g. stress exposures, gene knock in/out, etc. 
at the absolute concentration reporting, which also is 
promising for further discovery of how metabolites con-
tribute to sense and regulate metabolic flux and physiol-
ogy in general [30, 38, 41].

Metabolites have different functions, from precur-
sor metabolites in central metabolism via intermedi-
ates to building blocks in macromolecular assembly, 
some metabolites are important signaling molecules 
(e.g. cAMP, ppGppp), butyrolactones), others important 
energy (ATP) and redox carriers (NAD(P)H), and, impor-
tantly, some are present only at local nodes while others 
have many interactions/ roles in the global metabolic net-
work. While some metabolites are known to contribute 

in the regulation of enzyme activity and gene expression 
[38–40], recent original and opinion publications dis-
cuss how metabolites and metabolite levels contribute in 
metabolic flux-sensing and further how metabolic flux 
can regulate physiological state, although latter mecha-
nisms are far from resolved and understood but more 
point to focus in future experimentation [41]. All these 
aspects contribute to the challenge of how to interpret 
metabolome data, e.g. metabolite pools can both increase 
and decrease by increased turnover rates (i.e. flux), but, 
in any case, any change in metabolite levels indicate 
perturbation around that specific node/ pathway. The 
growth rate has for many decades been known as one 
main determinant for the macromolecular composition 
of microbial cells [24], but recent data indicate that the 
substrate uptake rate is also important for the metabolic 
phenotype including the metabolome composition. Thus, 
these two rates were central guides in the data evalua-
tion and interpretation of this study. Energy charge ratio 
(ECR -the relationship among ATP, ADP, and AMP, range 
between 0 and 1 [42]) was consistent and about 0.6 across 

- max          max

a b

Fig. 5  A plot showing changes in the metabolites of central metabolic pathways. This plot is plotted based on logarithmic value (base 2) of the 
ratio of intracellular metabolites concentration of S.cerevisiae in (a) nitrogen to glucose and (b) phosphorous to glucose-limited chemostat at the 
dilution rate of 0.12 h−1. Heatmap coding is from–max (blue) to max (red), below LOQ/uncertain/ not detected metabolites are grey
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different types of nutrient limitations and specific growth 
rates (Additional file 4: Table S7). Thus, a stable energetic 
state is probably a priority for the cell. Another trend in 
the global data set is the higher relative variation in gly-
colytic and PPP pools vs amino and organic acids, and 
nucleoside phosphate pools being the less variant among 
all the cultivation conditions (Additional file  2: Figure 
S3). This data presentation also shows that F1,6BP is the 
metabolite with the relative largest variation, which is a 
prerequisite for a regulatory metabolite in addition to the 
needed positive correlation with other variables, growth, 
and substrate consumptions rates being the most impor-
tant. It is hard to point to other high variable metabolites 
with potential regulatory roles in the same plot, and the 
well-known regulatory metabolite αKG is among the 
least variable in this plot.

However, more patterns/ observations emerge dur-
ing the inspection of sub-sets of cultivation conditions 
F1,6BP and DHAP were observed in Crabtree-positive 
yeasts like our S. cerevisiae cen.pk strain to span in the 
range of tenfold increase or decrease in concentration 
which led to the suggestion that these metabolites can 
potentially function as a general flux indicator of glycoly-
sis and ethanol secretion [2]. These two metabolites also 
showed the strongest correlation with ethanol production 
among our panel of cultivation conditions and metabolite 
coverage (Additional file  2: Figure S5). In this regard, it 
is also interesting to note that F1,6BP and DHAP were 
significantly upregulated in nitrogen vs. glucose-limited 
chemostats (Fig. 5a). Glutamic acid is well known to play 
a central role in nitrogen metabolism because of its domi-
nance (first or second place) in the total amino acids pool 
irrespective of cultivation conditions, types, and severity 
of nutrient limitation as shown in the present study and 
many previous [43]. α-ketoglutarate, placed at the inter-
section of carbon and nitrogen metabolic pathways, has 
also emerged as a key master regulatory metabolite [39] 
and not only for regulation of carbon metabolism but 
also nitrogen metabolism [38]. This is also illuminated in 
the current metabolite profiling data set when compar-
ing nitrogen vs. glucose-limited chemostats (Fig. 5a). It is 
also interesting to note is the sharp accumulation of the 
three first TCA acids incl α-ketoglutarate in the phos-
phate limited vs glucose-limited chemostat not being 
reported before to our knowledge (Fig. 5b). However, the 
cultivation data must be included in the interpretation 
since glucose consumption is almost five times higher in 
phosphate limited chemostat that also shunts 40% of the 
glucose carbon to ethanol while there is no ethanol pro-
duction in the glucose-limited chemostat. Biomass yield 
is however four times higher in the glucose-limited che-
mostat. Altogether this indicates a large re-distribution in 
the intracellular metabolic fluxes which also is manifested 

by down-regulation of all metabolite pools except citrate, 
isocitrate, and a-ketoglutarate at the same growth rate of 
phosphate limited vs glucose-limited chemostats.

A deeper evaluation of the results, e.g. by kinetic 
model and simulations strictly requires enzyme concen-
trations [8, 44], but various computational approaches 
have been developed [5]. Experimental determination of 
main intracellular fluxes using 13C-label studies are also 
highly desired for validation/ can be used as constraints 
on modeling and simulation. Such multi-omics studies 
are extremely resource-demanding, but this study shows 
that the analytical metabolite profiling methodologies are 
ready for such future studies. In all, we have presented 
the most comprehensive central metabolite pool data set 
on multiple cultivation conditions, and highlights many 
interesting observations. It is available at MetaboLights 
website for further inspection and is a valuable resource 
for hypothesis generation and design of more targeted 
studies that can both identify potential new flux regulat-
ing metabolites and resolve more about how metabolites 
both signals and regulates the intracellular state.

Materials and methods
Cultivation conditions
Saccharomyces cerevisiae CEN.PK 113-7D inoculum was 
prepared in 6.8  g  L−1 YNB mineral medium (100  mL) 
containing 10  g  L−1 carbon source and grown in baf-
fled flasks at 30 °C with constant shaking at 200 rpm. S. 
cerevisiae was grown in Verduyn medium in batch with 
four different carbon sources: glucose, fructose, sucrose, 
and galactose, each having a concentration of 15  g  L−1, 
(NH4)2 SO4, 5.0 g L−1; KH2PO4, 3.0 g L−1; MgSO4.7H2O, 
0.5 g L−1; 1 mL trace elements and 1 mL vitamin stocks 
solutions as described in literature [31]. The yeast strain 
was cultivated in the bioreactor (New Brunswick, BioFlo 
115) having a working volume of 1500 mL, maintaining 
pH 5, 30  °C and air supply of nearly 0.3 vvm and agita-
tion was set to increase in a cascade mode starting from 
200  rpm to supply minimum dissolved oxygen level of 
40%. The sampling for growth and HPLC analysis (n = 3) 
was carried out at equal time intervals till the end of the 
exponential phase of slow-growing carbon source (galac-
tose) and the final sample at the end of fermentation. 
Sampling for intracellular metabolites (n = 4) was carried 
out two times: one when optical density (OD) at 600 nm 
was close to one (exponential phase) and another at a 
nearly stationary phase.

The chemostat process was run in the bioreactor with 
a working volume of 1000 mL and had similar operating 
conditions and medium compositions as described in 
batch with glucose of 10  g  L−1 (if specifically, not men-
tioned) except varying concentration of nutrients (glu-
cose for carbon, ammonium for nitrogen and phosphate 
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for phosphorous limitation) to which chemostat medium 
was limited. The nitrogen-limited continuous process 
was started with, 0.4  g  L−1 (NH4)2SO4 in batch and 
it was reduced to 0.2  g  L−1 in the feed tank while the 
phosphate-limited continuous process was started with 
0.1 g L−1 KH2PO4 during batch mode and 0.02 g L−1 dur-
ing chemostat operation. The glucose-limited continuous 
operation was started with 5 g L−1 glucose in batch while 
the feed tank had 1 g L−1 glucose (LG chemostat) during 
continuous operation. Another glucose-limited chemo-
stat was operated with high glucose, 10 g  L−1 (HG che-
mostat) during both batch and chemostat. NaOH (2 M) 
was used for maintaining pH 5. The sampling (n = 3 for 
HPLC and n = 4 for intracellular metabolites) in each 
dilution rate was carried out when the system was in a 
steady state as measured by OD, stabilization of carbon 
dioxide profile, and generally taken after four to six bio-
reactor volume exchange. Two pumps were utilized for 
automating the feeding of medium and draining of broth 
while maintaining the same weight of the bioreactor.

Quantification of extracellular substrates and products
Off gas data (CO2, O2, gas flow rate) was measured using 
a Gas Analyzer (DASGIP GA4, BlueSens, Eppendorf ). 
The gas analyzer was calibrated each time before start-
ing an experiment. A known volume of broth was cen-
trifuged at 4500g for 5  min at 4  °C. Supernatants were 
collected for determining concentrations of sugars and 
organic acids using high-performance liquid chromatog-
raphy (HPLC) and cell pellets were washed one time with 
saline water and the second time with MQ water. Biomass 
was transferred to a pre-weighed aluminum pan and 
dried at 110 °C until constant weight to prepare a stand-
ard curve and to determine dry cell weight (DCW). A 
standard calibration curve was used to convert OD600nm 
data into DCW. Extracellular metabolites concentrations 
were determined using a Hi-Plex column of dimension 
300 × 7.7 mm (Agilent Technologies), and a UV/vis and a 
refractive index (RI) detector on Alliance HPLC (Waters). 
The column was set at 45 °C and metabolites were eluted 
using 0.05 M H2SO4 in MQ-H2O as mobile phase with a 
flow rate of 0.8  mL  min−1. All data are presented as an 
average of three independent samples.

Sample preparation for intracellular metabolites 
quantification
The fast vacuum filtration method was utilized for sam-
pling intracellular metabolites [23]. A known volume of 
broth (depending upon cell density) was vacuum filtered 
using Supor® hydrophilic polyethersulfone filter having 
a pore size of 0.8 µm, 47 mm at 400 mbar below ambi-
ent pressure and washed quickly with precooled saline 
water (0.9%, w/v), followed by milliQ water. The filter 

containing cell biomass was immediately quenched in 
a known volume of pre-cooled extraction solvent in a 
50  mL centrifuge tube having the composition of Ace-
tonitrile 55% and Water 45%. The quenched samples 
were placed in − 80 °C until processed. All samples were 
processed for extracting intracellular metabolites into 
extracting solvent by three times freeze-thawing cycle: 
freezing in liquid nitrogen followed by thawing at nearly 
0 °C in ethanol bath. A brief vortexing of tubes was intro-
duced between each freeze-thawing cycle. The extraction 
solvent was centrifuged for 5  min at 4500g and 4  °C to 
separate filter/cell debris and supernatant. The extrac-
tion solvent containing intracellular metabolites was dis-
tributed into three aliquots into 15 mL Eppendorf tubes 
and concentrated by lyophilization and stored at − 80 °C. 
Each aliquot containing intracellular metabolites dried 
powder was reconstituted in 550  µL cold HPLC grade 
water, spin filtered in 3 kDa molecular cutoff filter using a 
centrifuge at 4 °C, and 20,000 g.

Intracellular metabolites quantification
Intracellular metabolite pools were analyzed on an 
ACQUITY UPLC system coupled to a Xevo TQXS triple 
quadrupole mass spectrometer equipped with an electro-
spray source (Waters, Milford, MA, USA) and each ali-
quoted sample was quantified using three tandem mass 
spectrometry (MS/MS) methods: two UPLC-MS/MS 
methods each for amino acids and organic acids, a cap-
illary ion chromatography (capIC-MS/MS) method for 
nucleotides, sugar phosphates and other phosphometab-
olites [17, 23, 45]. An electrospray source was set in the 
negative mode for capIC-MS/MS method. The isotope 
dilution strategy was used for nullifying matrix effect and 
external standards/samples were diluted by 20% using 
an internal standard. The biological extract of S cerevi-
siae grown on U13C-labeled glucose was used as internal 
standards in both organic acid and CapIC methods.

The organic acid method was adapted from lit-
erature and O-benzylhydroxylamine (O-BHA) and 
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride (EDAC) were used as derivatizing rea-
gents. The external standards and samples were derivat-
ized in a 96 well plate format. An electrospray source was 
set in positive mode. The organic acid metabolites were 
separated using Waters Acquity BEH C18 column having 
the dimension of 2.1 × 100 mm and pore size of 1.7 µm 
(Waters) maintained at 40 °C and eluted with a gradient 
of mobile phases: HPLC-grade water with 0.1% formic 
acid and pure methanol.

As in organic acids, external standards and samples 
were derivatized in a 96 well plate format using phenyl 
isothiocyanate as derivatization reagent (PITC meth-
ods). The 13C, 15  N isotope-labeled (Cambridge Isotope 
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Laboratories) amino acids mixture containing 19 amino 
acids was used as an internal standard in amino acids 
estimation. Derivatized samples were separated using an 
ACQUITY UPLC BEH C18 column having the dimen-
sion of 2.1 × 75 mm fitted with an ACQUITY UPLC BEH 
C18 2.1 × 5 mm VanGuard pre-column, both with a pore 
size of 1.7 µm (Waters). The column was set at 50 °C and 
eluted with a gradient of mobile phases: HPLC-grade 
water and acetonitrile, both containing 0.2% formic acid.

Computation and statistical analysis
Specific growth rate, substrate consumption rate, and 
extracellular metabolites production rates were calcu-
lated in the exponential phase of the batch by a linear 
least square regression between lnX and (t–t0) for spe-
cific growth rate and between (S or P) and (X–X0) for 
consumption and production rates, where X, S, P are 
DCW, substrate, and extracellular metabolite concentra-
tion at the time, t respectively and t0 and X0 are initial 
time and biomass, respectively. Mass spectrometry data 
were acquired using MassLynx 4.2 (Waters) and data was 
processed and quantified using its application manager, 
TargetLynx 4.2. All intracellular metabolites pools were 
reported as an average of three to four independent repli-
cas. Heat-maps and principal component analysis (PCA) 
score plots were generated using the MetaboAnalyst (Xia 
and Wishart 2016) and the R statistical software. For ease 
of analysis, missing data were substituted with zeroes. 
The correlation/principal component analysis was car-
ried out using the factoextra package in R. The correla-
tion analysis between substrate consumption rate and 
metabolite pools was performed with Excel. First was 
all data sorted on increasing subsrate consumption rate, 
then slope and r square values determined, and finally 
sorted on decreasing r square values as presented in 
Additional file 6: Table S9. Prior to performing the PCA, 
the data was autoscaled to zero mean and unit standard 
deviation. The statistical analysis was conducted using 
a two-tailed t-test (assuming unequal variance) on the 
metabolome data set of the selected cultivation condition 
to the reference data set. The central metabolism is visu-
alized using the Omix software [46].
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