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Abstract 

Background:  The term “metabolically healthy obese (MHO)” denotes a hale and salutary status, yet this connotation 
has not been validated in children, and may, in fact, be a misnomer. As pertains to obesity, the gut microbiota has 
garnered attention as conceivably a nosogenic or, on the other hand, protective participator.

Objective:  This study explored the characteristics of the fecal microbiota of obese Chinese children and adolescents 
of disparate metabolic statuses, and the associations between their gut microbiota and circulating proinflamma-
tory factors, such as IL-6, TNF-α, lipopolysaccharide-binding protein (LBP), and a cytokine up-regulator and mediator, 
leptin.

Results:  Based on weight and metabolic status, the 86 Chinese children (ages 5–15 years) were divided into three 
groups: metabolically healthy obese (MHO, n = 42), metabolic unhealthy obese (MUO, n = 23), and healthy normal 
weight controls (Con, n = 21). In the MUO subjects, the phylum Tenericutes, as well as the alpha and beta diversity, 
were significantly reduced compared with the controls. Furthermore, Phylum Synergistetes and genus Bacteroides 
were more prevalent in the MHO population compared with controls. For the MHO group, Spearman’s correlation 
analysis revealed that serum IL-6 positively correlated with genus Paraprevotella, LBP was positively correlated with 
genus Roseburia and Faecalibacterium, and negatively correlated with genus Lactobacillus, and leptin correlated posi-
tively with genus Phascolarctobacterium and negatively with genus Dialister (all p < 0.05).

Conclusion:  Although there are distinct differences in the characteristic gut microbiota of the MUO population 
versus MHO, dysbiosis of gut microsystem is already extant in the MHO cohort. The abundance of some metabolism-
related bacteria associates with the degree of circulating inflammatory compounds, suggesting that dysbiosis of gut 
microbiota, present in the MHO children, conceivably serves as a compensatory or remedial response to a surfeit of 
nutrients.
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Introduction
The global epidemic of childhood obesity, and the accom-
panying rise in the prevalence of endocrine, metabolic, 
and cardiovascular comorbidities, is perhaps the most 
impactful and ubiquitous public health disorder of the 
modern world [1]. In the context of this pandemic, a 

distinct group of youth with obesity who are devoid of 
metabolic disturbances—so-called “metabolically healthy 
obese” (MHO)—have been identified. Obesity notwith-
standing, by definition MHO children retain a favora-
ble metabolic profile, with preserved insulin sensitivity 
along with normal blood pressure, glucose homeostasis, 
lipids, and liver enzymes. Moreover, their hormonal, 
inflammation, and immune profiles are seemingly imper-
vious to obesity [2]. First described in obese adults, the 
MHO phenotype has also been extensively studied in 
young people with obesity [2]. Arguably, MHO may be 
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a transitional stage to the far more common, more high-
risk, conventional cardio-metabolic obese phenotype. 
Regardless of the aforesaid normal biochemical charac-
teristics of MHO, the risk for cardiovascular disease per-
sists since the MHO phenotype may be unstable, thereby 
transitory [3, 4].

Among the non-genetic factors associated with obesity, 
the gut microbiota has garnered attention as an obesity 
regulator given the robust correlations in animal stud-
ies between gut microbiota and body weight. Obese 
individuals, whether adults or children, have increased 
abundance in Firmicutes in concert with decreased 
in Bacteroidetes [5, 6]. The distinctive gut microbiota 
prevalent in obese subjects is recognized as promoting 
an unhealthy metabolic obese (MUO) phenotype with 
attendant comorbidities, such as increased endotoxemia, 
intestinal and systemic inflammation, as well as insulin 
resistance. An altered gut microbiota has been implicated 
in obesity and type 2 diabetes mellitus (T2DM) inso-
far as a decrement in certain species and gene richness 
have been linked to adiposity, dyslipidemia, and insulin 
resistance [7]. Hence, the clinical repercussions aside, it 
is plausible that differences in the gut microbiota could 
dictate whether an obese child is metabolically fit (MHO) 
or not (MUO) [8, 9].

Obesity and related metabolic disorders are associated 
with gut microbiota dysbiosis, disrupted intestinal bar-
rier and chronic inflammation [10]. For instance, obese 
Mexican children and adolescents had increased levels of 
leptin and C-reactive protein, which were associated with 
changes in the gut microbiota [11]. However, the asso-
ciation between gut microbiota and proinflammatory 
cytokines, such as IL-6, TNF-α and lipopolysaccharide-
binding protein (LBP), has not been fully investigated in 
children of varying metabolic statues. Firstly, this study 
examined the metabolic heterogeneity of obese children 
as it relates to the composition of the gut microbiota. 
And, as a secondary end point, identify metabolic-spe-
cific bacteria which associate with serum inflammatory 
factors incriminated in obesity comorbidities.

Results
Study participants
Based on weight status, the metabolically stable cohort 
subjects (n = 63) were subdivided as MHO (n = 42) or 
Con (n = 21).

The age of the 86 participates ranged from 5.5 to 
14.3 years, with a mean of 9.76 ± 1.93 years. There were 
65 obese children, of whom 23 were MUO and 42 were 
MHO. The BMI of other 21 children were normal. Age, 
weight, BMI, BMI-Z, WHtR, SBP, TG and LDL-c in the 
MUO group were significantly higher than the Con and 
MHO children, and HDL-c in the in the MUO group 

were significantly lower than the Con and MHO children 
(all p < 0.05, Table 1).

The weight, BMI, BMI-Z, WHR, WHtR, SBP, DBP, 
TG, LDL-c, IL-6, TNF-α, LBP and leptin were signifi-
cantly higher in the MHO group than the Con children, 
and HDL-c in the MHO group were significantly lower 
than the Con group (all p < 0.05). There was no statisti-
cal difference in age, gender, FPG and fasting TC between 
MHO and Con (all p > 0.05, Table 1).

Microbiota profiles in different metabolic status subjects
A total of 918,578 sequencing reads were obtained from 
86 fecal samples, with an average value of 10,681 counts 
per sample. We identified an overall of 146 OTUs, among 
which 136 OTU with ≥ 2 counts, and they were grouped 
in 9 phylum and 38 families.

Abundance profiling in different metabolic status subjects
Grouping OTUs at phylum level, and applying the 
Mann–Whitney U test on the relative abundances of 
phyla for the two groups, the relative abundances of phy-
lum Tenericutes was more prevalent in the metabolically 
healthy cohorts (Con and MHO children) compared to 
the MUO group (p = 0.006, Additional file  1: Table  S1 
and Fig. 1a).

On OTUs at the genera level, by Mann–Whitney 
U-test, including all the genera (merging small taxa with 
counts < 10), we identified that genera Anaerostipes, Alis-
tipes, Desulfovibrio, Fusobacterium, Gemmiger, Odori-
bacter, Oscillospira and Parabacteroides were more 
prevalent in the metabolically healthy cohorts (Con and 
MHO children) versus MUO children, yet the genus 
Dorea was more prevalent in MUO (p < 0.05; Fig.  1b, 
Table 2).

Alpha‑ and beta‑diversity in different metabolic status 
subjects
To assess the overall differences of microbial community 
structures in metabolic healthy and MUO subjects, we 
measured ecological parameters based on alpha-diver-
sity. The alpha-diversity analysis showed significantly 
higher diversity in metabolic healthy subjects (Con and 
MHO children) in comparison to MUO participants 
(p < 0.05, Fig. 2a, b, Additional file 1: Table S2).

To determine the differences between microbial com-
munity profiles in metabolic healthy and MUO subjects, 
we calculated beta-diversity. By Distance method Bray–
Curtis dissimilarities PCoA analysis, the gut microbiota 
samples from Con and MHO children were clustered 
together and separated partly from the MUO group. 
Upon analysis, the first coordinate (Axis.1) explained the 
18.6% of the inter sample variance the second coordinate 
(Axis.2) explained the 14.5% of the inter sample variance 
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in metabolic healthy subjects (Con and MHO children) 
in comparison to MUO participants (P = 0.038, Fig.  2e, 
Additional file 1: Table S3).

Bacterial taxa differences in different metabolic status 
subjects
We next used LEfSe analysis to identify bacteria in which 
the relative abundance was significantly increased or 
decreased in each phenotypic category. The Con and 
MHO children had members of the phylum Tenericutes, 
class Deltaproteobacteria, Mollicutes, order Desulfovi-
brionales, RF39, family Christensenellaceae, Odoribacte-
raceae, Porphyromonadaceae, Ruminococcaceae, genera 
Anaerostipes, Oscillospira, Odoribacter, Gemmiger, Para-
bacteroides, Alistipes, that were significantly higher than 
MUO subjects. Furthermore, the MUO subjects had 
members of the genus Fusobacterium that were sig-
nificantly higher than the Con and MHO children (all 
p < 0.05, Fig. 3a, b).

Microbiota profiles in obese children with different 
metabolic status
Abundance profiling
Grouping OTUs at phylum level, and applying the 
Mann–Whitney U test on the relative abundances of 

phyla for the MHO and MUO groups, the relative abun-
dance of phylum Tenericutes was more prevalent in the 
MHO group compared to the MUO group (p = 0.027, 
Table 3 and Fig. 1c).

On OTUs at the genera level, by Mann–Whitney U 
analysis, including all the genera (merging small taxa 
with counts < 10), we identified that genera Desulfovibrio, 
Parabacteroides and Gemmiger were more prevalent in 
MHO subjects compared to MUO subjects (p = 0.027, 
0.040 and 0.047, respectively; Fig. 1d).

Alpha‑ and beta‑diversity between MHO and MUO subjects
Regarding alpha-diversity, in both the MHO and MUO 
group, the analysis exposed significantly higher diversity 
in MHO subjects versus MUO participants (all p < 0.05, 
Fig. 2c, d, Additional file 1: Table S2).

Regarding beta-diversity, by an unweighted-UniFrac 
method, the MHO group was lower than the MUO group 
(p = 0.021, Additional file 1: Table S3).

Bacterial taxa differences between MHO and MUO subjects
LEfSe analysis showed MHO subjects had members 
of the phylum Tenericutes, class Deltaproteobacte-
ria, Mollicutes, order Desulfovibrionales, RF39, family 
Christensenellaceae, Odoribacteraceae, Rikenellaceae, 

Table 1  Anthropometric profiles and laboratory measurements

MUO metabolic unhealthy obese, MHO metabolically healthy obese, Con controls, BMI body mass index, BMI-Z BMI standard deviation Z score, WHR waist-to-hip ratios, 
TC total cholesterol, TG triglyceride, LDL-c low-density lipoprotein cholesterol, HDL-c high density lipoprotein cholesterol, LBP lipopolysaccharide-binding protein

*Compared with the MUO group, p < 0.05
#  Compared with the MHO group. Data is expressed either as mean ± SD or median (25th–75th centiles)

MUO (n = 23) Metabolic healthy subjects

Total (n = 63) MHO (n = 42) Con (n = 21)

Age (year) 10.96 ± 1.69 9.32 ± 1.84* 9.47 ± 1.68* 9.02 ± 2.14

Male (%) 65.2 50.8 54.8 42.9

Weight (kg) 61.4 ± 11.5 43.0 ± 14.6* 49.6 ± 12.4* 29.9 ± 8.5#

BMI (kg/m2) 27.02 ± 2.75 21.80 ± 4.91* 24.65 ± 3.14* 16.11 ± 1.91#

BMI-Z 2.81 ± 0.61 1.77 ± 1.53* 2.74 ± 0.60 − 0.16 ± 0.79#

WHR 0.89 ± 0.05 0.86 ± 0.06 0.88 ± 0.05 0.84 ± 0.06#

WHtR 0.55 ± 0.04 0.50 ± 0.06* 0.53 ± 0.04 0.43 ± 0.03#

SBP (mmHg) 116.45 ± 8.77 101.52 ± 8.36* 105.51 ± 6.96* 94.48 ± 5.51#

DBP (mmHg) 65.09 ± 5.72 62.57 ± 5.79 63.81 ± 6.45 60.38 ± 3.56#

FPG (mmol/L) 5.09 ± 0.67 4.87 ± 0.39 4.82 ± 0.38* 4.97 ± 0.40

TC (mmol/L) 4.54 ± 0.90 4.30 ± 0.62 4.39 ± 0.57 4.14 ± 0.69

TG (mmol/L) 1.62 ± 0.99 0.86 ± 0.30* 0.93 ± 0.33* 0.72 ± 0.19#

LDL-c (mmol/L) 2.65 ± 0.66 2.31 ± 0.53* 2.45 ± 0.48 2.03 ± 0.54#

HDL-c (mmol/L) 1.24 ± 0.24 1.58 ± 0.30* 1.51 ± 0.30* 1.71 ± 0.26#

Leptin (μg/mL) 2.70 ± 1.48 2.23 ± 1.83 3.10 ± 1.65 0.51 ± 0.35*#

TNF-α (pg/mL) 47.50 ± 25.63 48.48 ± 18.77 53.43 ± 17.88 38.59 ± 16.81#

IL-6 (μg/mL) 1.76 ± 0.86 1.65 ± 0.93 1.86 ± 1.04 1.23 ± 0.42*#

LBP (μg/mL) 34.8 (29.55, 41.20) 33.66 (27.01, 38.95) 33.28 (27.75, 41.22) 27.18 (22.02, 36.61)*#
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Desulfovibrionaceae, Porphyromonadaceae, Ruminococ-
caceae, genus Gemmiger, Parabacteroides that were sig-
nificantly higher than MUO subjects (all p < 0.05, Fig. 3c, 
d).

Microbiota profiles in MHO and Con children with different 
weight status
Abundance profiling
Grouping OTUs at phylum level, the relative abundances 
of phylum Synergistetes was more prevalent in the MHO 
group compared to the Con group (p < 0.05, Fig.  1e, 
Table 4).

On OTUs at the genera level, including all the genera 
(merging small taxa with counts < 10), genera Anaer-
otruncus, Bacteroides, Adlercreutzia and Pyramidobacter 
were more prevalent in MHO subjects versus MUO sub-
jects (p < 0.05; Fig. 1f ).

Alpha‑ and beta‑diversity between different weight status
Regarding alpha-diversity, the Shannon diversity index, 
Observed OTUs, Faith’s phylogenetic diversity and Pie-
lou’s evenness based on OTU distribution did not reveal 
any significant difference between MHO and Con (all 
p > 0.05, Additional file  1: Table  S2); also, beta-diversity 
did not differ significantly between these two groups. 
Importantly, none of the comparisons were significantly 
different (all p > 0.05) after correction for multiple testing 
(Additional file 1: Table S3).

Bacterial taxa differences in MHO and Con children 
of different weight status
LEfSe analysis showed MHO subjects had members of 
the phylum Synergistetes, class Synergistia, order Syn-
ergistales, Erysipetotrichales, family Dethiosulfovibrion-
aceae, genus Pyramidobacter were significantly higher 
than the Con-, however, the latter had members of the 

Table 2  The mean relative abundance of  gut microbiota 
with significantly differences in different metabolic status 
at genera level

MUO metabolic unhealthy obese, MHO metabolically healthy obese, Con 
controls

MUO MHO and Con Z P value

Anaerostipes 0.001 0.001 − 2.084 0.037

Odoribacter 0.000 0.002 − 2.122 0.034

Desulfovibrio 0.000 0.003 − 2.142 0.032

Alistipes 0.010 0.023 − 2.182 0.029

Fusobacterium 0.001 0.002 − 2.185 0.029

Dorea 0.012 0.005 − 2.288 0.022

Gemmiger 0.007 0.013 − 2.320 0.020

Oscillospira 0.008 0.010 − 2.445 0.014

Parabacteroides 0.007 0.020 − 2.552 0.011
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Fig. 2  Characterization of alpha- and beta-diversity of the gut 
microbiota in Con, MUO and MHO groups. The y-axes show the 
Shannon index (a, c) and Chao1 richness index (b, d). The x-axes show 
the phenotypic categories. Additional data are in Additional file 1: 
Table S2. Principal coordinates analysis (PCoA) plot of Con and MHO 
children and MUO subjects (e). The plots show the first two principal 
coordinates (axes) for PCoA using Bray–Curtis Distance method. MUO 
metabolic unhealthy obese, MHO metabolically healthy obese, Con 
controls
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family Bacteroidaceae, genus Anaerotruncus that were 
significantly higher (all p < 0.05, Fig. 3e, f ).

Correlations between inflammatory factors and bacterial 
abundance
To evaluate correlations between bacteria and serum 
inflammatory factors (IL-6, TNF-α and leptin), Spear-
man’s rho cut-off values were assessed, taking into 
account r > 0.4, r < − 0.4 (p < 0.05, Additional file  1: 
Table S4).

For MUO subjects, Spearman’s correlation analy-
sis revealed that IL-6 positively correlated with genus 
Lactococcus, TNF-α positively correlated with phylum 
Bacteroidetes, negatively correlated with genus Citro-
bacter. LBP positively correlated with genus Prevotella, 
Odoribacter, and negatively correlated with genus Bifi-
dobacterium, Streptococcus, Roseburia, Clostridium 
and Veillonella. Leptin positively correlated with genus 

Eubacterium and negatively correlated with genus Fae-
calibacterium and Lachnospira (all p < 0.05, Additional 
file 1: Table S4).

For MHO subjects, Spearman’s correlation analy-
sis revealed that serum IL-6 positively correlated with 
genus Paraprevotella. LBP positively correlated with 
genus Roseburia and Faecalibacterium, and negatively 
correlated with genus Lactobacillus. Leptin positively 
correlated with phylum Bacteroidetes, Firmicutes, genus 
Phascolarctobacterium and negatively correlated with 
genus Dialister (all p < 0.05). There was no association 
between the bacteria and TNF α at the genus level (all 
p > 0.05).

Metabolic pathway predictions
A total of 15 KEGG pathways were generated using the 
composition of the fecal microbiota based on PICRUSt2 
in the metabolic healthy cohorts (MHO and Con sub-
jects) versus MUO subjects (Fig.  4, Additional file  1: 
Table S5). Importantly, the glucose metabolism pathways, 
including GDP-mannose biosynthesis and superpathway 
of UDP-N-acetylglucosamine-derived O-antigen building 
blocks biosynthesis, were increased in metabolic healthy 
cohorts and, conversely, the superpathway of fucose and 
rhamnose degradation were alternated in the metabolic 
healthy cohorts (all p < 0.05). In the comparison between 
MHO and MUO subjects, we obtained 3 differential 
pathways including superpathway of fucose and rham-
nose degradation, photorespiration, and sucrose degrada-
tion III, which were also observed significantly different 
between the metabolic healthy cohorts (MHO and Con 
subjects) versus MUO subjects (Fig. 4, Additional file 1: 
Table  S6). Moreover, 11 differential metabolic pat-
terns differentially expressed resulted in the compari-
son between MHO versus Con (Fig. 4, Additional file 1: 
Table S7).

Discussion
Recognized for decades, there is wide-ranging het-
erogeneity among obese individuals as to their risk for 
developing metabolic dysfunction and its attendant com-
plications [12]. Also well-established, and which may 
contribute to this metabolic heterogeneity, is the fact 
those with central obesity are more prone to develop-
ing T2DM and cardiovascular disease than those with 
peripheral obesity [13]. In this study, to indirectly address 
the issue of fat distribution, we found there were no sig-
nificant differences in WHR and WHtR between the two 
obese cohorts, MHO vs. MUO.

A chronic low-grade inflammation, triggered by nutri-
ent surplus, is a constituent of obesity. Adipose-origi-
nated metabolic inflammation develops pari passu with 
insulin resistance and, as such, is a key element in the 

Table 3  The mean relative abundance of  gut microbiota 
obese subjects with  different metabolic status at  phylum 
level

MHO, metabolically healthy obese; MUO: metabolic unhealthy obese

Italicized value  P < 0.05

MHO MUO z p value

Actinobacteria 0.012 0.025 − 0.783 0.434

Bacteroidetes 0.453 0.371 − 0.823 0.410

Firmicutes 0.393 0.321 − 0.919 0.358

Fusobacteria 0.006 0.016 − 1.494 0.135

Proteobacteria 0.132 0.267 − 0.535 0.593

Tenericutes 0.003 0.000 − 2.212 0.027

Verrucomicrobia 0.001 0.000 − 1.480 0.139

Table 4  The mean relative abundance of  gut microbiota 
with significantly differences in obese subjects with different 
metabolic status at genera level

MHO, metabolically healthy obese; Con, control

Italicized value P < 0.05

MHO Con Z P value

Actinobacteria 0.012 0.018 − 1.181 0.238

Bacteroidetes 0.319 0.377 − 1.006 0.314

Cyanobacteria 0.000 0.000 − 1.245 0.213

Firmicutes 0.572 0.531 − 0.831 0.406

Fusobacteria 0.006 0.014 − 0.324 0.746

Proteobacteria 0.088 0.057 − 1.881 0.060

Synergistetes 0.000 0.000 − 1.964 0.050

Tenericutes 0.002 0.002 − 1.408 0.159

TM7 0.000 0.000 − 0.481 0.630

Verrucomicrobia 0.001 0.001 −0.177 0.859
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metabolic syndrome [14]. In this study, we found there 
were no significant differences in serum IL-6, TNF-α, 
LBP and leptin between MHO and MUO subjects. It 
stands to reason that, besides these cytokines, other 
biochemical factors likely contribute to the metabolic 
diverseness in obese subjects. Or, perhaps, the concen-
trations of circulating compounds—such as those above-
mentioned—poorly reflect those found in extracellular or 
intracellular tissues.

Evidence can be adduced that the gut microbiota is 
involved in the aetiology of obesity and obesity-related 
complications such as nonalcoholic fatty liver disease, 
insulin resistance and T2DM [15, 16]. These disorders 
are characterized by alterations in the diversity of the gut 
microbiota, and the relative abundance of certain genera. 
And bacteria-generated metabolites, translocated from 
the gut across a disrupted intestinal barrier, can affect 
several metabolic organs, such as the liver and adipose, 
thereby contributing to systemic metabolic inflammation 
[17].

Recently, several animal studies concluded that an 
optimal healthy-like gut microbiota may bestow a more 
propitious obese phenotype [18, 19]. For instance, the 
abundance of Bacteroidetes and Tenericutes were closely 
aligned with bile acid metabolism and obesity-related 
inflammation in a murine model of the metabolic syn-
drome [20]. In our study, we corroborate this finding: 
reduced abundance of Tenericutes in the MUO group 
compared with the metabolically healthy groups (MHO 
and Con). Moreover, individuals with diminished insulin 
sensitivity had lower abundance of Tenericutes [21]. And, 
in animal experiments, administration of hydrogenated 
xanthohumol, which mitigates the metabolic syndrome 
by altering gut microbiota diversity and abundance, 
specifically, a reduction in Bacteroidetes and Teneri-
cutes [20]. These results suggested an important role of 
Tenericutes in metabolism. We also observed greater 
abundance of Anaerostipes in the MHO and Con cohort, 
as well as the alpha and beta diversity. Using separate-
sample Mendelian randomization to obtain estimates 
of the associations of 27 genera of gut microbiota with 
cardiovascular disease risks, Anaerostipes was identified 
as being nominally associated with T2DM [22], and this 
effect may be a result of butyrate production [23]. These 
results buttress the notion of dysbiosis in the gut micro-
biota of MUO individuals.

To characterize the gut microbiota in obese children of 
different metabolic status, we further analyze the MHO 
and the MUO groups. The abundance of Tenericutes was 
significantly reduced in the MUO group compared with 
the metabolic healthy children, indicating that Teneri-
cutes is related to the metabolic state, and the bacterial 
imbalance is independent of weight. Previously reported, 

the abundance of Parabacteroides was significantly 
decreased in obese subjects with metabolic syndrome [6], 
and nonalcoholic fatty liver disease [24], and negatively 
correlated with weight gain and leptin plasma levels [25]. 
And germane to our findings, both genera Gemmiger 
[26] and Parabacteroides [27] are gut bacteria negatively 
associated with obesity and disturbed host metabolism. 
In accordance, we found that that the fecal abundance of 
these bacteria was significantly higher in the MHO group 
compared with MUO.

The genera Parabacteroides are short-chain fatty acids 
(SCFAs)-producing bacteria. SCFAs are low molecular 
weight molecules produced from fermentation of dietary 
fiber or polysaccharides by gut microbiota. Absorbed by 
the intestinal epithelium into the blood, they can beget 
physiological disorders in the host, such as deranged lipid 
metabolism and intestinal environment imbalances [28, 
29]. In our determination, alpha and beta diversity were 
significantly higher in Con and MHO children compared 
with the MUO group, again supporting the notion of dys-
biosis in the unhealthy MUO population.

Notwithstanding that the gut microbiota of obese 
individuals with metabolic syndrome may indeed be 
unhealthy, is the gut microbiota of the MHO popula-
tion really healthy? We compared the characteristic of 
gut microbiota in the Con and MHO children of differ-
ent weights. Even though there was no significant differ-
ence in alpha and beta diversity, the relative abundances 
of phylum Synergistetes and genus Bacteroides were ele-
vated in the MHO group compared to the Con children. 
Based on a metagenomic approach and bioinformatics 
analysis in obese adults, it is plausible that an abundance 
of the microbiota taxa Bacteroides could portent the evo-
lution to T2DM [30].

Alterations in gut ecology can propel inflammatory 
pathways in several tissues, resulting in glucose intoler-
ance and CVD [31, 32]. In rodents, a disturbance in the 
tripartite interactions between the microbiota, bile acids, 
and host metabolism, along with the bacterial production 
of lipopolysaccharides (LPS, i.e., endotoxemia), can beget 
derangements in glucose homeostasis [16, 26]. LBP is an 
acute inflammation phase protein that complexes with 
LPS and facilitates binding with CD14. In adolescents, 
serum LBP robustly correlates positively with indices of 
abnormal glucose and lipid metabolism. Herein, we found 
that, depending on the metabolic status, the serum levels 
of classic proinflammatory factors IL-6, TNF-α, LBP and 
leptin were related to the abundance of various fecal bac-
teria. Notably, in MHO children, serum leptin correlated 
positively with genus Phascolarctobacterium and nega-
tively with Dialister—the latter genera observed with low 
abundance in obese children [33]. And, relevant to our 
findings, it is noteworthy that Phascolarctobacterium is 
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purportedly a biomarker for adult T2DM [30]. In high 
fat diet obese mice with insulin resistance, Prevotella was 
deemed as pro-inflammatory and, of note, its abundance 
in our study correlated with serum LBP [34]. As illus-
trated in our MHO children and the above-cited studies 
in humans, the gut microbiota is a marquee player in pre-
serving normal metabolism despite obesity or, perhaps, 
an ephemeral protective microbiota destined to change 
with transition to MUO.

Compared to the metabolic healthy cohorts in the 
MUO children, several pathways associated with glu-
cose and lipid metabolism pathways, such as fucose and 
rhamnose degradation and sucrose degradation III were 
increased. Conversely, mannan degradation was mark-
edly decreased. Of interest, serum fucose levels are higher 
in the T2DM patients compared to healthy cohorts [35]. 
Mannan-oligosaccharide in the diet improves the meta-
bolic syndrome in mice, alternatively insulin resistance 
and dyslipidemia [36, 37]. We found that bacterial fucose 
and rhamnose degradation and sucrose degradation III 
were increased in the MUO subjects compared with the 
MHO subjects, inferring that the change was independ-
ent of weight. However, insofar as serum levels of fucose 
were undetectable, and the dietary intake of sucrose and 
mannan were not assessed in our study, future longitudi-
nal studies could conceivably unravel the intricate, pos-
sibly causual, relationships between the gut microbiota, 
obesity, and aberrant intermediary host metabolism.

Conclusion
In aggregate, the MUO population had lower alpha- and 
beta-diversity, and lower abundance of Tenericutes, inferring 
a robust intricate inter-relationship between gut bacterial 
ecology and host metabolic state. In the MHO population, 
phylum Synergistetes and genus Bacteroides and Phasco-
larctobacterium were more prevalent, and the abundance 
of some metabolism-related bacteria correlated with circu-
lating proinflammatory factors, suggesting that compared 
to healthy controls, dysbiosis of gut microbiota was already 
extant in the MHO children, and conceivably a compensa-
tory or remedial response to a surfeit of nutrients.

Methods
Study population
This study was approved by the Ethics Committee of the 
Fuzhou Children’s Hospital of Fujian Medical University 
and, in all cases, informed consent was obtained.

The cross-sectional study consisted of participants 
managed by Fuzhou Children’s Hospital of Fujian Medi-
cal University from September 2017 to March 2018. This 
study was limited to participants who met the following 
criteria: (a) ages between 5 to 15 years old, and (b) resi-
dence of Fujian province.

The exclusion criteria were as follows: any endo-
crine disorder, history of antibiotic therapy in the past 
3 months prior to the enrollment, chronic gastrointesti-
nal illness or use of gastro-intestinal-related medication, 
or diarrheal disease (World Health Organization defini-
tion) in the past 1 month.

Clinical assessment
Height and weight were measured by trained nurses. 
BMI-Z scores were calculated based on reference values 
of Li et  al. [38]. At the end of normal expiration, waist 
and hip circumference were measured to the nearest 
0.5  cm using standard technique with nonelastic tape. 
Waist circumference was measured at a point midway 
between the lower border of the ribs and the iliac crest, 
and hip circumference was measured at the widest part 
of the hip. A waist-to-hip ratio (WHR) was calculated by 
waist circumference (cm) divided by hip circumference 
(cm) and a waist-to-height ratio (WHtR) by waist cir-
cumference (cm) divided by height (cm).

Laboratory methods
All participants maintained their usual dietary pattern 
at least 3 days before blood sampling. After 12 h of fast-
ing, 10 mL venous blood was drawn by registered nurses. 
All blood samples were stored at − 80 ℃, and analyzed 
within two weeks of sampling. Serum IL-6 was meas-
ured using a commercial ELISA kit (Abcam, UK), with 
an 4.4% inter-assay coefficient of variation (CV). Serum 
TNF-α levels was measured using a commercial ELISA 
kit (Abcam, UK), with inter-assay and intra-assay CVs 
of 3.3% and 9%, respectively, and serum leptin assayed 
using a commercial ELISA kit (Abcam, UK), with inter-
assay and intra-assay CVs of 2.4% and 2.7%, respectively. 
The serum LBP levels were measured using a commercial 
ELISA kit (Abnova, Taiwan, China), with inter-assay and 
intra-assay CV 9.8–17.8% and 6.1%, respectively. Fasting 
plasma glucose (FPG) and plasma lipids, including total 
cholesterol (TC), triglyceride (TG), high-density lipopro-
tein cholesterol (HDL-c) and low density lipoprotein cho-
lesterol (LDL-c), were assayed by standard methods using 
specific reagents (Beckman Coulter AU5800, USA). Fast-
ing insulin (INS) was determined by a chemiluminescent 
immunoassay (IMMULITE 2000, Siemens Healthcare 
Diagnostics Products Limited, Germany). Fecal samples 
were collected and processed as previously described 
[39].

Definition of metabolic unhealthy
Metabolic syndrome parameters were applied accord-
ing to 2019 Expert Committees [40], and MUO was 
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defined by the presence of at least one of the following 
metabolic traits: (1) FPG ≥ 5.6 mmol/L; (2) systolic blood 
pressure ≥ 90th percentile for gender and age; (3) fasting 
HDL-C < 1.03 mmol/L; and (4) fasting TG ≥ 1.7 mmol/L.

Genomic DNA extraction and library construction
The microbial community DNA was extracted and 
quantified as previously described [39]. Variable regions 
V3–V4 of bacterial 16s rRNA gene were amplified with 
degenerate PCR primers [39]. Libraries were qualified 
by the Agilent 2100 bioanalyzer (Agilent, USA). The 
validated libraries were used for sequencing on Illumina 
MiSeq platform (BGI, Shenzhen, China) following the 
standard pipeline of Illumina, and generating 2 × 300 bp 
paired-end reads.

Statistical analysis
Statistical analyses of clinical data were performed using 
the Statistical Package for the Social Sciences software 
version 23.0 (SPSS Inc. Chicago, IL, USA). The normal-
ity of the data was tested by Kolmogorov–Smirnov test. 
Data are expressed as mean ± SD or median (25th–75th 
percentiles). Comparisons of the results were assessed 
using independent samples t test, Mann–Whitney U 
test and Kruskal–Wallis test, depending on the type of 
data distribution (e.g., non parametric). Comparison of 
rates between two groups was by chi-square. A value of 
P < 0.05 was deemed statistically significant.

Statistical analysis of 16s rRNA sequencing data were 
performed on alpha- and beta-diversity measurements, 
which was done by software QIIME2 (v2019.7) [41]. 
Kruskal–Wallis Test was adopted for two groups com-
parison. Linear discriminant analysis Effect Size (LEfSe) 
Analysis was assessed by software LEFSE [42]. To pre-
dict metagenome functional content from 16S rRNA 
gene surveys, Picrust2 [43] have been applied to obtain 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, and STAMP [44] was used to analyze the dif-
ferential pathways.
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