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Abstract 

Background:  Therapeutic glycoproteins have occupied an extremely important position in the market of biophar-
maceuticals. N-Glycosylation of protein drugs facilitates them to maintain optimal conformations and affect their 
structural stabilities, serum half-lives and biological efficiencies. Thus homogeneous N-glycoproteins with defined 
N-glycans are essential in their application in clinic therapeutics. However, there still remain several obstacles to 
acquire homogeneous N-glycans, such as the high production costs induced by the universal utilization of mamma-
lian cell expression systems, the non-humanized N-glycan structures and the N-glycosylation microheterogeneities 
between batches.

Results:  In this study, we constructed a Pichia pastoris (Komagataella phaffii) expression system producing truncated 
N-GlcNAc-modified recombinant proteins through introducing an ENGase isoform (Endo-T) which possesses pow-
erful hydrolytic activities towards high-mannose type N-glycans. The results showed that the location of Endo-T in 
different subcellular fractions, such as Endoplasmic reticulum (ER), Golgi or cell membrane, affected their hydrolytic 
efficiencies. When the Endo-T was expressed in Golgi, the secreted IgG1-Fc region was efficiently produced with 
almost completely truncated N-glycans and the N-GlcNAc modification on the glycosite Asn297 was confirmed via 
Mass Spectrometry.

Conclusion:  This strategy develops a simple glycoengineered yeast expression system to produce N-GlcNAc modi-
fied proteins, which could be further extended to different N-glycan structures. This system would provide a prospec-
tive platform for mass production of increasing novel glycoprotein drugs.
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Background
N-Linked glycosylation is a fundamental co- and/or 
posttranslational modification, regulating glycoprotein 
folding and functions. N-Glycosylation is evolutionarily 
conserved in all domains of life, including all eukaryotes, 

some bacteria [1] and many archaea [2]. In mammalian 
cells, most of the membrane-bound and secreted pro-
teins are generally N-glycosylated and involved in many 
essential biological processes [3, 4]. In the classical path-
way of N-linked glycosylation, the assembled oligosac-
charide (GlcNAc2Man9Glc3) is transferred onto the 
asparagine (Asn) residue in the NXS/T (X ≠ Pro) context 
of the polypeptides from dolichol pyrophosphate by the 
oligosaccharyltransferases (OST) in endoplasmic reticu-
lum [5–7] and glycans are subsequently maturated in the 
Golgi compartment [8].
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At present, therapeutic glycoproteins have occupied an 
increasing proportion in the market of biopharmaceuti-
cals. Glycoprotein drugs have been widely used to fight 
against diverse diseases, such as pathogenic microbial 
invasive diseases, autoimmune disorders and cancers. It 
has been shown that N-glycosylation and N-glycan struc-
tures can affect the biophysical and pharmacokinetic 
properties of therapeutic glycoproteins [9–11]. Several 
novel approaches have been attempted to engineer N-gly-
cosylation pathway to decrease the microheterogeneity of 
therapeutic proteins via in vitro chemoenzymatic meth-
ods or in vivo engineered expression systems [11–18].

The endo-N-acetyl-β-D-glucosaminidase (endogly-
cosidase or ENGase) specifically cleave the diacetyl-
chitobiose core [GlcNAc β (1–4) GlcNAc] of N-linked 
glycans between the two N-acetylglucosamine (GlcNAc) 
residues [19] to release an N-GlcNAc-carrying peptides/
proteins and an intact oligosaccharide group [20]. Some 
ENGases or mutants also have potent transglycosyla-
tion activity [21–26] and were utilized in N-glycoprotein 
remodeling [27]. Wang and collaborators used an Endo-
A mutant (N171A) to glycosylate IgG1-Fc region [21, 23, 
28, 29], and further used the mutants of Endo-S (D233A 
and D233Q) or Endo-S2 (D184M and D184Q) for full-
length antibody glycosylation remodeling with three 
major types (complex, high-mannose, and hybrid type) of 
N-glycans for modulating IgG effector function [14, 22, 
30]. This chemoenzymatic glycosylation method utiliz-
ing ENGases provides an efficient way to introduce com-
plex N-glycans onto polypeptides, which was valuable for 
glycoprotein drug production [13, 31]. In this method, 
N-GlcNAc modified proteins were essential as accep-
tors for the production of glycoproteins with different 
glycans. However, the direct transfer of a single GlcNAc 
moiety has only been found in the modification of spe-
cific serines or threonines catalyzed by O-linked GlcNAc 
transferase (OGT) [32]. Recently, N-Glycosyltransferase 
AaNGT and ApNGTQ469A were reported to transfer 
GlcN and produce N-GlcNAc glycans by coupling with 
GlmA [16, 33].

Pichia pastoris, which was reassigned to the genus 
Komagataella spp. in 1995 [34], is an organism com-
monly employed to produce a variety of active proteins 
[35–37] with N- and/or O-linked glycans [38–40]. The 
N-linked glycans of the P. pastoris-produced proteins was 
high-mannose type without core fucose [41], which leads 
to reduced in vivo half-life and therapeutic function. The 
engineered P. pastoris have been constructed to produce 
glycoproteins with N-glycosylation profiles similar to 
human [39, 42], but the products are still heterogeneous 
with lower yield [39, 40, 43].

In this study, we construct a P. pastoris system express-
ing truncated N-GlcNAc-modified recombinant proteins 

through introducing an ENGase isoform (Endo-T) which 
possesses powerful hydrolytic activities towards high-
mannose type N-glycan in intracellular environment, into 
different subcellular fractions. We believe the application 
of this easy and low-cost glycoprotein synthetic method 
would provide a prospective platform for mass produc-
tion of increasing novel glycoprotein drugs with diverse 
homogeneous N-glycan structures.

Results
Expression of Endo‑T on the surface of Pichia pastoris
Endo-T is the first fungal member of glycoside hydro-
lase family 18 with ENGase-type activity secreted from 
Hypocrea jecorina (Trichoderma reesei) [44]. In the Gly-
coDelete glycoengineering strategy, Endo-T has been suc-
cessfully expressed in the Golgi of mammalian cells and 
plants to produce recombinant protein with homogenous 
N-glycan structures [17, 18], or to enhance integral mem-
brane protein with homogenous N-GlcNAc expression in 
P. pastoris [45]. Here, we first expressed Endo-T on the 
surface of P. pastoris using the Pir1-based surface display 
system [46]. To detect the surface expression of Endo-T, 
immunofluorescence staining with anti-Flag antibody 
was performed. P. pastoris cells anchored with Endo-T 
were clearly labeled, while no immunofluorescence was 
observed in the cells transferred with an empty plasmid 
(Fig. 1a). This result indicated that the Endo-T could be 
successfully expressed on the cell surface. Human IgG1-
Fc region and GalNAc-T1 recombinantly expressed in P. 
pastoris and Ribonuclease B (RNase B, Sigma) were used 
as the substrates to detect the deglycosylation activity 
of the immobilized Endo-T. Endo-T on the cell surface 
exhibited hydrolysis activity to remove high mannose-
type N-glycans from different glycoproteins (Fig.  1b, 
Additional file  1: Figure S1). Compared with the com-
mercial PNGase F, the surface displayed Endo-T showed 
lower deglycosylation efficiency (Fig. 1b, Additional file 1: 
Figure S1). PNGase F could release most of the glycans 
from IgG Fc domain in 1 h, while approximate 40% of the 
glycoprotein left after treatment with surface displayed 
Endo-T. We also tried to co-express human IgG1-Fc 
region in P. pastoris with surface displayed Endo-T and 
found most of the proteins still maintained the N-glycans 
(data not shown).

Expression of ENGase in the ER or Golgi of Pichia pastoris
Endo-T has been expressed in the Golgi to produce 
recombinant protein with homogenous N-glycan 
structures [17]. Here, we first fused Endo-T with the 
trans-membrane region of S. cerevisiae MNN9 (man-
nosyltransferase) [47] or MNS1 (endoplasmic reticu-
lum mannosyl-oligosaccharide 1,2-alpha-mannosidase) 
[48, 49] respectively, to ensure that Endo-T could be 
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localized to the Golgi or Endoplasmic reticulum (ER). 
The fused proteins were expressed in P. pastoris to 
make a platform for the production of homogeneous 
N-GlcNAc modified proteins instead of heterogeneous 
high-mannose type N-glycans (Fig.  2a, b). In this study, 
human polypeptide N-acetylgalactosaminyltransferase 1 
(GalNAc-T1) containing two N-glycans was selected to 
characterize the engineered yeast strains. The reporter 
protein construct built on the plasmid pPIC9K (Invit-
rogen) included the Saccharomyces cerevisiae α-mating 
factor signal at N-terminus to direct the protein to the 
ER membrane and a hexa-histidine tag at the C-termi-
nus. Upon expression of the human GalNAc-T1 in the 
GS115 background, it was clear that the protein demon-
strated only one protein band of approximately 70  kDa 
(Fig.  2c). By transferring to the engineered host strain, 
which expressed ENGases (Endo-T) in the ER or Golgi, 
the target proteins were produced with a similar yield, 
but exhibited three protein bands as shown in the SDS-
PAGE and Western blot results (Fig.  2c). After in  vitro 
treatment with PNGase F, all the samples showed a sin-
gle band with similar MW (Fig. 2d), providing evidence 
that the lower bands in the samples from the engineered 
strains were the proteins deglycosylated of one or two 
N-glycans by Endo-T, although the deglycosylation effi-
ciency is not high enough to remove all the N-glycans. 

Different fermentation conditions, such as the pH of 
culture medium (BMMY), methanol concentration and 
incubation temperature, were tested for the production 
of total and deglycosylated GalNAc-T1 (Additional file 1: 
Figures S2, S3, S4). The culture temperature showed great 
influence on the stability of GalNAc-T1 protein and low 
temperature (20  °C) was preferred. More deglycosylated 
GalNAc-T1 proteins was produced in P. pastoris MNN9-
EndoT strains cultured in BMMY (with pH 6.0) for 
4–5 days at 20 °C with 0.5% methanol (v/v) added to the 
culture every 24 h.

Characterization of IgG1‑Fc region with N‑GlcNAc
The IgG1-Fc region harboring an N-glycan moiety at 
Asn-297 [50] was selected to be expressed in the engi-
neered strains. The full-length of human IgG1-Fc includ-
ing the hinge region was cloned into the pPIC9k vector 
(Invitrogen) and the resulting recombinant plasmid was 
transformed into the engineered P. pastoris expression 
strain. After 4 or 5  day induction with 0.5% methanol, 
the supernatant of the medium were precipitated with 
acetone and detected by SDS-PAGE. The IgG1-Fc pro-
duced from P. pastoris wild type appeared as a protein 
band at ~ 38 kDa (Fig. 3a), which was in agreement with 
the calculated heterogeneous glycosylated monomeric 
IgG1-Fc (33–34  kDa). But when we expressed IgG1-Fc 
in the engineered yeast strains, the IgG1-Fc appeared a 
slightly smaller molecular weight (Fig. 3a). Thus, we esti-
mated that the IgG1-Fc region expressed in the Endo-
T-harboring strains could be deglycosylated. Moreover, 
more than 95% of the IgG1-Fc in P. pastoris MNN9-
EndoT strains was deglycosylated, while approximate 10% 
of the IgG1-Fc in P. pastoris MNS1-EndoT was attached 
with N-glycans (Fig.  3a). The recombinant protein har-
vested from the P. pastoris MNN9-EndoT strains was 
then purified by affinity chromatography on a protein G 
column and approximate 200–250  mg of recombinant 
IgG1-Fc were obtained from 1 L of fermentation medium 
(Fig.  3b, Additional file  1: Figure S5), which was higher 
than the previous reports (from 10 to 100 mg/L) [51–53]. 
The purified IgG1-Fc from WT and MNN9-EndoT strain 
were detected by ConA blot (Additional file 1: Figure S6), 
suggesting the truncated N-glycan in engineered strain. 
To define whether the N-glycan structure was a single 
GlcNAc moiety, IgG1-Fc region proteins produced from 
E. coli and P. pastoris MNN9-EndoT strain were digested 
with Endoproteinase Glu-C and analyzed with MALDI-
TOF MS (Fig. 3c) and LCMS-IT-TOF (Additional file 1: 
Figure S7). The protein from P. pastoris WT with the 
huge heterogeneous N-glycans was not easy to detect 
and compare with the protein from engineered strain 
(MNN9-EndoT) with one GlcNAc moiety. For IgG1-Fc 
from E. coli, a peak with the m/z value of 2850.63 was 
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Fig. 1  Endo-T expressed on the surface of P. pastoris. a Fluorescence 
micrographs showed the immunofluorescence staining of the Pichia 
pastoris WT (NC, left) and Pir-Endo-T (Right) with anti-Flag antibody. b 
SDS-PAGE was used to detect the deglycosylation activity of P. pastoris 
Pir-Endo-T strain. IgG1-Fc purified from P. pastoris GS115 was used as 
substrates to incubate at 37 °C for different time. Lane 1: 0 min; Lane 
2: 1 h; Lane 3: 2 h; Lane 4: 4 h; Lane 5: 6 h; Lane 6: treated with PNGase 
F 1 h
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consistent with the expected naked peptide P295–318 
(calculated, MW = 2850.183) (Fig.  3c, Additional file  2: 
Table  S2). On the other hand, N-GlcNAc-IgG1-Fc from 
P. pastoris MNN9-EndoT strain assigned 3053.68 (m/z), 
indicating a HexNAc (an MW increase of 203 Da) addi-
tion in this peptide (Fig. 3c).

Structural conformation of N‑GlcNAc IgG1‑Fc
The hinge-containing IgG1-Fc region should be cova-
lently linked as a homodimer through the formation 
of a disulfide-bond [54]. SDS-PAGE with or without 
reduction was used to assay the forming of the dimer. 
On SDS-PAGE gel, the IgG1-Fc appeared as a pro-
tein band at ~ 38 kDa (from the WT strain) or ~ 34 kDa 
(from the engineered strain) under reducing conditions 
(with DTT treatment), while ~ 60  kDa (from the WT 
strain) or ~ 55-kDa (from the engineered strain) under 

non-reducing conditions (without DTT treatment) 
(Fig.  4a). The results were consistent with the previous 
observations [28]. We also found that the dimer appeared 
smaller in size on SDS-PAGE than the calculated molec-
ular weight [28]. These results indicate that both P. pas-
toris recombinant IgG1-Fc proteins with or without the 
N-glycans were obtained as homodimers.

The secondary structures of IgG1-Fc regions 
expressed in P. pastoris were determined using far-UV 
circular dichroism (CD) spectroscopy (Fig.  4b). The 
IgG1-Fc region purified from P. pastoris WT strain 
and engineered P. pastoris were tested and compared. 
The secondary structure of the Fc fragment at 25 °C is 
populated primarily of beta-strands and a wavelength 
of 218  nm was chosen for unfolding by CD measure-
ment [53]. For the WT-Fc, the spectra obtained at 25 °C 
showed a maximum negative peak at 218  nm, which 

a
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d

Fig. 2  Endo-T expressed in Golgi or ER of P. pastoris to produce N-GlcNAc modified proteins. a Schematic presentation of the glycoengineering 
process of P. pastoris to produce N-GlcNAc modified proteins. b P. pastoris strains were detected using Western Blot with anti-Flag antibody. Lane 1: 
P. pastoris Pir-Endo-T; Lane 2: P. pastoris MNS1-EndoT; Lane 3: P. pastoris MNN9-EndoT; c human GalNAc-T1 secreted in different P. pastoris strains and 
detected using Western Blot with anti-His antibody. Lane 1: P. pastoris WT; Lanes 2–3: P. pastoris MNS1-EndoT; Lanes 4–5: P. pastoris MNN9-EndoT. G0–2 
stands for the protein with 0–2 glycans. d Purified human GalNAc-T1 treated with PNGase F and analyzed by SDS-PAGE. Lane 1: before PNGase F 
treatment; Lane 2: treated with inactivated (boiled) PNGase F; Lane 3: treated with PNGase F. M stands for the protein marker
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was similar with previous reports [53]. Moreover, the 
CD spectrum of N-GlcNAc-Fc showed only minor dif-
ferences to the WT spectrum (Fig. 4b), which was con-
sistent with deglycosylated IgG [55] or aglycosylated 
Fc [56]. It can be seen that the Fc fragments with 
truncated glycans have intact secondary and tertiary 

structures that are very similar to the wild-type Fc frag-
ment, with a characteristic minimum at 218 nm.

Discussion
Glycoproteins are an important class of biomolecules 
involved in many physiological and pathological pro-
cesses. Several strategies have been developed to produce 

Fig. 3  IgG1-Fc produced as an N-GlcNAc modified glycoform. a Human IgG1-Fc expressed in P. pastoris strains and detected with Coomassie 
staining SDS-PAGE. Lanes 1–2: P. pastoris WT cultured for 3 days and 4 days; Lanes 3–4: P. pastoris MNS1-EndoT cultured for 3 days and 4 days; 
Lanes 5–6: P. pastoris MNN9-EndoT cultured for 3 days and 4 days; M stands for the protein marker. b IgG1-Fc purified from P. pastoris WT (Lane 
1) and P. pastoris MNN9-EndoT (Lane 2). M stands for the protein marker. c MALDI-TOF MS analysis of peptide maps from digested recombinant 
IgG1-Fc proteins. The IgG1-Fc proteins secreted from E. coli (upper) and P. pastoris MNN9-EndoT (lower) were digested with Glu-C, and analyzed by 
MALDI-TOF MS. The peak with m/z at 2850.63 was assigned as the peptide (P295-QYNSTYRVVSVLTVLHQDWLNGKE-318), while the peak with m/z at 
3053.66 was assigned as the peptide (P295–318) with a HexNAc moiety addition
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glycoproteins with homogeneous glycan structures [11–
14], of which ENGase-mediated N-glycan remodeling 
was a powerful approach to prepare defined glycocon-
jugates. The major limitation of this method is the dif-
ficulty to obtain N-GlcNAc proteins in large quantities. 
In this study, we constructed a P. pastoris expression sys-
tem, which localized recombinant ENGases in the cell 
membrane, ER or Golgi, to produce secreted N-GlcNAc-
modified proteins. Our results showed the location of 
ENGase in different subcellular fractions affected their 
hydrolytic efficiencies.

Pichia pastoris is an expression strain widely utilized 
to produce functional N-glycoproteins [35–37] with 
high yields [57]. The expression levels of recombinant 
proteins in P. pastoris were even up to 10  g/L [58]. The 
N-linked glycans from P. pastoris are of high mannose 
type without core fucose, which could be preferred as 
substrates by a variety of ENGase isoforms. We attempt 

to build up an expression system, which localized the 
recombinant ENGases in the cell surface membrane, ER 
or Golgi. As an immobilized enzyme on cell surface, the 
ENGase could hydrolyze glycans from N-glycoproteins 
in in  vitro reaction system, while few deglycosylated 
proteins were found in the cultured medium containing 
methanol. When the ENGase was expressed in Golgi or 
ER, the secreted target glycoprotein could be efficiently 
deglycosylated. Fused with MNN9, the hydrolysis activ-
ity of ENGase against IgG Fc domain and GalNAc-T1 
proteins is higher than fused with MNS1. It is assumed 
that the Endo-T preferred the microenvironment of yeast 
Golgi, such as the intracellular pH, as well as the glycan 
structure.

Human IgG1 carries a conserved N-glycan at Asn-297 
of its Fc region. The presence and precise structures of 
this N-glycan plays an important role in determining 
antibody’s structure and effector functions. For exam-
ple, the deglycosylated IgG1 are highly flexible and 
more prone to aggregation [59, 60]; removal of the core 
fucose from N-glycans increases the Fc’s affinity towards 
FcγRIIIA [14, 61–63]; the terminal α2, 6-sialylation is 
critical for its anti-inflammatory activity [64–66]. Fc 
region-containing fusion proteins are also influenced by 
the structure of N-glycans [67–69]. Both full length of 
human IgG1 and the IgG1-Fc region have been expressed 
in P. pastoris for glycan remodeling, in which the N-gly-
cans need removing by in vitro reactions [14, 28]. When 
IgG1-Fc was expressed in our engineered strain (MNN9-
EndoT), > 95% of secreted IgG1-Fc harbored only one 
GlcNAc moiety. Our results also showed that the total 
yield, the secondary structure and the protein conforma-
tion were not affected by the removal of the N-glycans. 
As the secreted proteins have been folded to the native 
state in the ER apparatus, the deglycosylation in the Golgi 
should only slightly affect the secretion of glycopro-
teins. Thus, N-GlcNAc IgG1-Fc protein produced from 
engineered P. pastoris should have the same properties 
as the in  vitro deglycosylated proteins used for further 
N-glycans remodeling [14, 27, 30]. In our strategy, the 
N-GlcNAc proteins could be obtained with high yield via 
simple purification step from the culture medium.

Combined with the in vitro glycan remodeling or enzy-
matical elongation methods, this engineered P. pastoris 
system provides a prospective platform for powerful pro-
duction of recombinant glycoprotein drugs. On the other 
hands, this system was not efficient enough to remove all 
the N-glycans when more than one oligosaccharide was 
attached on the target proteins. Some reasons might be 
responsible for the decrease of ENGase hydrolysis activ-
ity, such as (1) the spatial hindrance caused by localiza-
tion expression; (2) the intracellular pH in Golgi was a 
non-optimal pH for Endo-T; (3) the cultured temperature 

1      2      3    M      1       2       3

+ DTT                    - DTT

100
70
55
40
35
25

MW
kDa

a

b

Fig. 4  Characterization of the yeast expressed IgG1-Fc. a The purified 
IgG1-Fc proteins were detected with SDS-PAGE under non-reducing 
conditions (right) and reducing conditions (left). M stands for 
the protein marker; Lane 1: IgG1-Fc from E. coli; Lane 2: IgG1-Fc 
from P. pastoris WT; Lane 3: IgG1-Fc from P. pastoris MNN9-EndoT. 
b Comparative secondary structure content obtained by CD data 
analysis
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(20–25 °C) was too low. But, the lower pH (pH 6.0) of the 
medium and the lower cultured temperature (20–25 °C) 
were important for higher yields of secreted recombinant 
proteins. The precise optimum pH of ENGases generally 
corresponds with the catalytic carboxylic acid residues in 
the enzyme active sites [70–72], and depends on the indi-
vidual ENGase isoform [27]. The hydrolytic activity of 
ENGase was pH-dependent and drops rapidly as the pH 
is either higher or lower than the optimum pH [70]. The 
temperature was another factor to affect ENGases’ hydro-
lytic activity. Most of the novel ENGase isoforms are 
derived from microbes. Thus the optimum temperature 
is 30–37  °C and the lower temperature would decrease 
the hydrolytic activity. We supposed the temperature 
was the major reason for the lower deglycosylation effi-
ciency of the fungal ENGase (Endo-T) in P. pastoris than 
in mammalian cells or plant cells. In the further work, 
we would screen and apply some novel ENGase isoforms 
which possess powerful hydrolytic activities towards 
high-mannose type N-glycan in the cultured condition of 
P. pastoris, such as pH 6.0, 20–25 °C.

Conclusions
In this work, we developed a simple glycoengineered 
yeast expression system to efficiently produce homoge-
neous N-GlcNAc modified glycoproteins which could 
be further elongated to different N-glycan structures. 
We believe the application of this easy and low-cost gly-
coprotein synthetic method would provide a prospec-
tive platform to efficiently produce a growing number of 
novel glycoprotein drugs.

Materials and methods
Bacterial strains, media and chemicals
Pichia pastoris GS115 (his4−), pGAPZa and pPIC9K 
used for the protein expression were obtained from 
Invitrogen (Thermo Fisher Scientific). Escherichia coli 
TOP10 or DH5α strain was used as the host for recom-
binant DNA construction work. E. coli was grown in 
Luria–Bertani (LB) medium at 37  °C with 100  μg/mL 
ampicillin or 50 μg/mL zeocin where necessary. Buffered 
minimal glycerol (BMGY) medium, buffered minimal 
methanol (BMMY) medium and minimal dextrose (MD) 
medium were prepared following the P. pastoris expres-
sion manual (Invitrogen). Mouse anti-His monoclonal 
antibody and mouse anti-Flag monoclonal antibody were 
purchased from Genscript Bio-Technologies (Nanjing, 
China). Con A-Biotin was purchased from Vector Labo-
ratories. HRP-conjugated secondary antibody and HRP- 
conjugated Streptavidin was purchased from ZSGB-Bio 
(Beijing, China). All other chemicals and solvents were 
bought from Sangon-Biotech (Shanghai, China).

Plasmid construction and transformation
The genes (sequence in Additional file  2: Table  S1) and 
primers (Table 1) used in this study were synthesized by 
Genscript Bio-Technologies. PCR was performed using 
relevant pairs of primers listed (Table 1). The EndoT gene 
was cloned into pPIC9K-Pir1 with EcoRI and MluI to 
make the constructs pPIC9K-Pir1-EndoT and introduced 
into P. pastoris GS115 as previously reported [46]. The 
DNA encoding the transmembrane region of S. cerevisiae 
MNN9 (mannosyltransferase) or MNS1 (endoplasmic 
reticulum mannosyl-oligosaccharide 1,2-alpha-man-
nosidase) was fused with EndoT gene and cloned into 
pGAPZa with EcoRI and NotI to make the constructs 
pGAPZa-MNN9-EndoT or pGAPZa-MNS1-EndoT 
respectively. The plasmids were linearized with BspHI 

Table 1  The primers used in this study

Primers Sequence

MNS1-F 5-CCG​GAA​GGC​GCC​ACC​ATG​AAG​AAC​TCT​GTC​GGT​ATT​TCA​ATT​GCA​ACC​ATT​GTT​GCT​ATC​ATA​GCA​
G-3

MNS1-R 5-CCG​CTC​GAG​TCT​CTC​AAA​GTG​TTC​GTA​CCA​TGG​CAC​ATA​GTA​TAT​AGC​TGC​TAT​GAT​AGC​AAC​AAT​G-3

EndoT-F (EcoRI) 5-CGG​AAT​TCG​TTC​CTG​TCA​AGG​AGT​TGCA-3

EndoT-R-Pir (MluI) 5-CGA​CGC​GTT​TAC​TTA​TCG​TCA​TCG​TCCT-3

EndoT-R (NotI) 5-ATA​AGA​ATG​CGG​CCG​CTT​ACT​TAT​CGT​CAT​CGT​CCT​-3

GalNAc-T1-F (SnaBI) 5-GAC​CTA​CGT​AGG​ACT​TCC​TGC​TGA​AGA​TGT​-3

GalNAc-T1-R (NotI) 5-ATA​AGA​ATG​CGG​CCG​CTA​GTG​ATG​ATG​ATG​ATG​ATG​ATG​GAA​TAT​TTC​TGG​CAG​GGT​GAC​-3

Fc-F (EcoRI) 5-CCG​GAA​TTC​GAA​CCC​AAG​TCC​TGC​GAC-3

Fc-R (NotI) 5-ATA​AGA​ATG​CGG​CCG​CTC​ACT​TGC​CGG​GGC​TCAG-3

pGAP-F 5-GTC​CCT​ATT​TCA​ATC​AAT​TGAA-3

5′AOX 5-GAC​TGG​TTC​CAA​TTG​ACA​AGC-3
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and introduced into P. pastoris GS115 via the Gene Pul-
ser Xcell Electroporation System (Bio-Rad). The multi-
copy insert transformants were selected with YPD plates 
containing 1 mg/mL Zeocin. The Zeocin-resistant clones 
were confirmed by PCR with pGAP-F and EndoT-R.

The cDNA encoding the human GalNAc-T1 and 
IgG1-Fc region were subcloned into the pPIC9K vector 
respectively. Resultant clones, named pPIC9k-GALNT1 
and pPIC9K-Fc, were selected and confirmed by DNA 
sequencing. The plasmid pPIC9k-GALNT1 and pPIC9K-
Fc were linearized with SacI and introduced into P. pas-
toris GS115 WT and obtained pGAPZa-MNN9-EndoT 
and pGAPZa-MNS1-EndoT strains. The multicopy insert 
of transformants were selected with MD plates and sub-
sequently YPD plates containing different concentrations 
of G418 (0.5 mg/mL, 1 mg/mL, 2 mg/mL or 4 mg/mL). 
The G418-resistant clones were confirmed by PCR with 
GalNAc-T1-F or Fc-F and 3′-AOXI primers. The PCR-
positive clones from 4 mg/mL G418 plates were selected 
for the expression. Besides, the pET28a-IgG1-Fc was 
transferred into E. coli BL21 (DE3) as a control.

Analysis of engineered P. pastoris strains
The engineered P. pastoris Pir1-EndoT strains were cul-
tured in BMMY medium with 0.5% methanol (v/v) for 
12  h and washed with PBS. For immunofluorescence 
staining, the P. pastoris WT and Pir-EndoT strains were 
incubated with anti-Flag antibody and subsequently 
FITC-conjugated rabbit antibody against mouse Ig for 
45 min and mounted with antifade reagent (BBI Life Sci-
ences). Fluorescence microscopy was performed using a 
Zeiss Axioskop 2 plus with an AxioCam MR3. Bit depth 
and pixel dimensions were 36 bits and 1388 × 1040 pix-
els, respectively. For western blot, the P. pastoris strains 
were lysed with glass beads and analyzed by Western blot 
with anti-Flag antibody.

Expression and purification of recombinant proteins
Recombinant yeast clones were grown at 30 °C in 50 mL 
BMGY until the OD600 reached 2–6. For the fermentation 
condition screen, Cells were harvested and cultured in 
BMMY (with pH 6.0, 6.5 or 7.0) for 4–5 days at different 
temperature (20  °C or 25  °C) and 0.5% or 1% methanol 
(v/v) was added to the culture every 24  h. The fermen-
tation culture was precipitated by cold acetone after 
2–5 days respectively and Coomassie-stained SDS-PAGE 
was used to test the production of total and glycosylated 
proteins.

After fermentation, secreted recombinant proteins 
were purified using Ni–NTA agarose (for GlalNAc-T1) or 
Protein G column (for IgG1-Fc region). For GalNAc-T1, 
the cell-free supernatant was loaded onto the Ni–NTA 
column pre-equilibrated with binding buffer (20  mM 

Tris, pH 8.0, 150  mM NaCl, 20  mM imidazole). After 
washed with 30  mL of binding buffer, the purified pro-
teins were eluted with binding buffer containing 250 mM 
imidazole. For IgG1-Fc region, the cell-free supernatant 
was diluted 5 times by PBS buffer, and was loaded onto 
the Protein G column pre-equilibrated with PBS buffer. 
After washed with 30 mL of PBS buffer, the purified pro-
teins were eluted with 0.1 M Glycine Buffer pH 2.7. The 
eluted protein was neutralized immediately with 1  M 
Tris–HCl (pH 7.0). The positive fractions (determined by 
SDS-PAGE) were desalted and stored at − 20 °C. Recom-
binant IgG1-Fc region produced in E. coli was purified 
following the same Ni–NTA protocol.

SDS‑PAGE and western blot
Purified IgG1-Fc region and GalNAc-T1 proteins were 
treated with peptide N-glycosidase F (PNGase F, New 
England Biolabs), following the manufacturer’s protocol. 
Samples were run on 12% SDS-PAGE gels with or with-
out DTT reduction, and transferred onto polyvinylidene 
fluoride membranes for 90 min. After blocked in 5% BSA 
or 1% polyvinylpyrrolidone (Sigma) the membranes were 
incubated with His-tag antibody or ConA-B respectively 
at 4  °C overnight. Blots were developed with DAB Sub-
strate kit (Solarbio, China) following incubation with 
HRP-conjugated secondary antibody for 1  h at room 
temperature.

Mass spectrometric analysis of IgG1‑Fc protein
Approximately 20  μg of Fc protein was reduced with 
10 mM DTT in 50 mM ammonium bicarbonate (AmBic) 
for 45 min at 60  °C and alkylated by 20 mM iodoaceta-
mide at room temperate for 30 min. Then, 10 mM DTT 
was added to terminate alkylation before the protein was 
subjected to proteolysis by Glu-C (Promega). The treat-
ment was terminated by boiling, and the digested pep-
tides were desalted via a standard C18 Zip-Tip procedure 
and analyzed by MALDI-TOF MS (Shimadzu, Tokyo, 
Japan) or LCMS-IT-TOF system (Shimadzu, Tokyo, 
Japan) operated in the positive linear mode.

Circular dichroism spectroscopy
The secondary structure of the IgG1-Fc domian (from P. 
pastoris WT and MNN9-EndoT strains) were determined 
by circular dichroism using J-815 Jasco spectropolarim-
eter (Jasco Co., Tokyo, Japan) equipped with a PTC-348 
WI thermostat under a constant nitrogen flow. A 0.1-cm 
path length cell was used to collect data in the far ultra-
violet region (200–250  nm) at a scan speed of 20  nm/
min and a response time of 1  s. Spectra were acquired 
at 25  °C and measured in PBS buffer. The spectrum of 
a blank containing buffer alone was subtracted from all 
spectra. The CD data were analyzed using the CDtoolX 
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and online tools dichroweb (http://dichr​oweb.cryst​.bbk.
ac.uk/).

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​4-020-1280-0.

Additional file 1: Figure S1. SDS-PAGE was used to detect the deglyco-
sylation activity of P. pastoris Pir-Endo-T strain. RNase B (a, upper) and Gal-
NAc-T1 purified from P. pastoris GS115 (b, lower) were used as substrates to 
incubate at 37 °C for different time. Lane 1: 0 min; Lane 2: 1 h; Lane 3: 2 h; 
Lane 4: 4 h; Lane 5: 6 h; Lane 6:8 h; Lane 7: over-night; Lane 8: treated with 
PNGase F 1 h. The star showed the bands from P. pastoris strain. Figure S2. 
SDS-PAGE analysis of GalNAc-T1 expression in engineered strains at 20 °C. 
The P. pastoris MNS1-EndoT strain (a and b) and P. pastoris MNN9-EndoT (c 
and d) were cultured in BMMY with different pH at 20 °C, and 0.5% (a and 
c) or 1% (b and d) methanol (v/v) was added to the culture every 24 h. 
Lane 1: 2d; Lane 2: 3d; Lane 3: 4d; Lane 4: 5d. Figure S3. SDS-PAGE analysis 
of GalNAc-T1 expression in engineered strain at 25 °C. The P. pastoris MNS1-
EndoT strain (a and b) and P. pastoris MNN9-EndoT (c and d) was cultured 
in BMMY with different pH at 25 °C, and 0.5% (a and c) or 1% (b and d) 
methanol (v/v) was added to the culture every 24 h. Lane 1: 2d; Lane 2: 3d; 
Lane 3: 4d; Lane 4: 5d. Figure S4. SDS-PAGE analysis of GalNAc-T1 expres-
sion in engineered strain. The P. pastoris MNS1-EndoT strain (Right) and P. 
pastoris MNN9-EndoT (Left) was cultured in BMMY with pH 6.0 at different 
temperature and different concentration of methanol (v/v) was added to 
the culture every 24 h. Lane 1: 20 °C 0.5% Methanol 2d; Lane 2: 20 °C 0.5% 
Methanol, 3d; Lane 3: 25 °C 0.5% Methanol, 2d; Lane 4: 25 °C 0.5% Metha-
nol 3d; Lane 5: 30 °C 0.5% Methanol, 2d; Lane 6: 30 °C 0.5% Methanol, 3d; 
Lane 7: 20 °C 0.2% Methanol 2d; Lane 8: 20 °C 0.2% Methanol 3d; Lane 9: 
20 °C 0.1% Methanol 2d; Lane 10: 20 °C 0.1% Methanol 3d. Figure S5. The 
purification of IgG1-Fc. IgG1-Fc from E. coli was purified with Ni-NTA and 
IgG1-Fc from P. pastoris was purified with Protein G column. The numbers 
showed the different eluted fractions. Figure S6. SDS-PAGE and lectin 
blot analysis of IgG Fc protein. IgG1-Fc purified from P. pastoris WT (Lane 1) 
and P. pastoris MNN9-EndoT (Lane 2) were analyzed with Coomassie blue 
(left) or Con A lectin blot (right). Figure S7. LC/MS-IT-TOF MS analysis of 
peptide maps from digested recombinant IgG1-Fc proteins. The IgG1-Fc 
protein from E. coli (upper) and P. pastoris MNN9-EndoT (lower) were 
digested with Glu-C, and analyzed by LC/MS-IT-TOF. The peak with m/z 
713.6287 was assigned as the peptide (P295-QYNSTYRVVSVLTVLHQD-
WLNGKE-318), while the peak with m/z at 764.3955 was assigned as the 
peptide (P295–318) with a HexNAc moiety. (4) stands for [M+4H]4+. 

Additional file 2: Table S1. The DNA and amino acid sequences used 
in this study. Table S2. Peptide map of recombinant IgG1-Fc domain 
digested with Glc-C.
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